Point defects in Ga_2O_3 as efficient UV V is light emission centers

Vitalii Ivanov, Oksana Volnianska, Elżbieta Guziewicz Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Ga₂O₃ ultra-wide-band-gap oxide

- E_{a} = 4.8 eV \rightarrow a member of UWBGO family
- Transparent material; candidate for advanced technology applications (solar-blind UV photodetectors, solar cells, sensors and power electronic applications)
- 5 polymorphs (rhombohedral α , monoclinic β , defected spinel γ , cubic δ and orthorhombic
- Advantages over GaN and SiC: the cost of producing large-area substrates potentially lower (melt growth techniques possible), MOSFET with larger electric field
- Absence of clear demonstration of *p*-type doping (full Ga_2O_3 -based bipolar devices are impossible)

Rapid Thermal Annealing @ 800°C

- A significant difference between as grown and annealed β -Ga₂O₃ crystals
- Annealing at 800°C results in evolution of PL spectra \rightarrow PL fine structure, in which zero-phonon-line (ZPL) at 2.99 eV is accompanied by phonon repetitions separated by 145 meV
- High difference in Huang-Rhys factor

Gallium Oxide Wafer (Stanford Advanced Materials) //www.samaterials.com

 β -Ga₂O₃ monoclinic crystal structure

- Monoclinic crystal structure; 3 oxygen sites (O_1 , O_2 two trigonal, and one O_2 tetragonal) and 2 Ga sites (tetrahedral & octahedral) \rightarrow anisotropy of physical, optical and transport properties
- DFT calculations \rightarrow CBM at the Γ point and fairly flat VB;

indirect $E_a = 4.66 \text{ eV}$, direct $E_a = 4.69 \text{ eV}$

- Large m_h ; holes tend to form small polarons localized at lattice imperfections
- Lack of near-band-edge (NBE) photoluminescence
- RT PL dominated by a broad set of transitions @ ~399nm ascribed to oxygen vacancies $(V_{OI}, V_{OII} \text{ and } V_{OIII}) \rightarrow 416, 442 \text{ and } 464 \text{ nm}; \text{ but several mechanisms invoked to explain the}$ UVA PL (native defects, self-trapped polarons)
- Ultra-wide $E_q \rightarrow$ attractive matrix for Rare Earth (RE) dopants

Room temperature PL of β -Ga₂O₃:RE

- E_q of 4.9 eV \rightarrow transparent material, appropriate matrix for Rare Earth-based emitters
- Single β-Ga₂O₃ (010) crystals (from Kyma Co.) implanted with Sm and Eu to a fluence of 4e14, 1e15 and 5e15 at/cm², implantation energy 150 keV

PL temperature dependence

- RTP annealed β -Ga₂O₃ crystals \rightarrow PL temperature dependence with E_{exc}= 3.49 eV
- PL fine structure, with the ZPL at 2.99 eV accompanied by 3 phonon repetitions is observed at higher temperature

PL dynamics of β -Ga₂O₃ $\hbar \omega_{ev}$ =3.493 eV, $\hbar \omega_{det}$ = 2.88 eV

β -Ga₂O₃ RTP 800°C. Temperature dependence @ $\hbar \omega_{ex}$ =3.49 eV

- PL temperature dependence with E_{exc}= 3.49 eV (resonant excitation of PL line)
- Fast atypical PL drop for $T \le 50K$ for RTP annealed β -Ga₂O₃ crystal and for T \leq 250K for as grown
- As grown β -Ga₂O₃ crystal \rightarrow interplay between different transitions; a few PL centers below 30K

PL decay time

- Implantation performed at UMCS (Marie Curie-Skłodowska University, Lublin, Poland, dr M. Turek)
- Intensive RE-related photoluminescence observed at RT
- WBG of 4.9 eV \rightarrow weak PL quenching expected; PL does not depend on temperature
- Samarium implantation with a fluence of 4.10^{14} , 1.10^{15} and 5.10^{15} at/cm² \rightarrow intensive PL at RT
- Intensive PL @ RT for high fluences \rightarrow quenching effect not observed

Broad PL band @ RT PL of RE doped β -Ga₂O₃T=300K $\hbar\omega_L$ =5.821 eV m - doped Eu - doped 10000 1.5 2.0 2,5 3,0 3.5 4.0 Energy (eV)

- Bright PL from defect states appears at 2.4 3.2 eV (with excitation above E_{α})
- Energy far from $E_a = 4.9 \text{ eV} \rightarrow \text{intensive RT PL}$ (relatively weak dependence on the Fermi function)

- PL decay time measured for hv_{exc} = 3.49 eV and hv_{det} = 2.88 eV
- PL decay is non-exponential \rightarrow indirect indication of DAP centrum
- Relatively short decay times (~4 ns at RT) indicate isolated centrum \rightarrow good candidate for a single photon emitter (SPE)?

Density Functional Theory calculations

- DFT: Calculation performed using QUANTUM-ESPRESSO package.
- Within the generalized gradient approximation (GGA)+U.
- Hubbard-like +U terms where applied on the both d(Ga) and p(O).
- $U_{Ga} = 3 \text{ eV}$, $U_0 = 7 \text{ eV}$ give the correct band structure of Ga_2O_3 . Calculated $E_q = 4.85$ eV.
- Defect calculations in the 160-atoms supercell

- Total density of states of Ga₂O₃: without defects (pure) and involving one vacancy at Ga_1, Ga_2, O_1, O_2 and O_3 sites, respectively; Ga-vacancies are deep acceptor states; O-vacancies are deep donor states
- with different electronic structure that depends on site

• This PL band is very common and appears in undoped and implanted crystals

- Laser excitation above E_{α} (5.82 eV) \rightarrow bright RT PL from defect states appears at 2.2 – 3.4 eV, with max at 2.95 eV (intensity weakly dependent on the Fermi function)
- PL excitation (PLE) with a xenon lamp shows max intensity of the 2.95 eV line at 5 eV (close to bandgap)
- Urbach states near the CB edge

The work was performed within the international project co-financed by the funds of the Minister of Science and Higher Education in the years 2021-2024; contract No. 5177/HZDR/2021/0 and Helmholtz-Zentrum Dresden-Rossendorf (20002208-ST).

- Single β -Ga₂O₃ crystal is a good candidate for optical applications when doped with RE ions
- Single β -Ga₂O₃ does not show near-band-edge, but bright RT PL from defect states at 2.2 3.4 eV, with max at 2.95 eV
- Annealing at 800°C results in evolution of PL spectra \rightarrow PL fine structure, in which zero-phonon-line (ZPL) at 2.99 eV is accompanied by 3 phonon repetitions
- PL temperature dependence indicates only one transition center
- DFT calculations indicate that this line originate from oxygen vacancy defect (derived from trigonal oxygen)
- PL temperature dependence and short Decay time (about 4 ns at RT) indicate that this state might be promising as a SPE center