High-pressure study of double perovskite Cs₂Na_{0.6}Ag_{0.4}InCl₆: Bi³⁺

S. Narayanan^{*}^a, D. Errandonea^b, J. Wang^c, H. Liang^c, D. Wlodarczyk^a, C.-G. Ma^d, A. Suchocki^a

^a Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

^b Departamento de Fisica Aplicada, Universidad de Valencia, E-46100 Valencia, Spain

^cSchool of Chemistry, Sun Yat-sen University, Guangzhou 510006, China

^d School of Optoelectronic Engineering Chongqing University of Posts and Telecommunications Chongqing 400065, China

Motivation and aim of the work

- Toxicity is a major threat to perovskites' expansion into the field of applications.
- **Development of lead-free perovskites with desirable characteristics.**
- A₂B(I)B(III)X₆ structured lead-free halide double perovskites (LFHDPs) have gained attention as stable, environmentally friendly alternatives to

Diamond Anvil Cell cryoDAC-LT (Almax easyLab)

conventional ABX₃ lead-based perovskites.

- Elucidate optical properties of $Cs_2Na_{0.6}Ag_{0.4}InCl_6$:Bi³⁺ double perovskites.
- Investigate phase transitions of $Cs_2Na_{0.6}Ag_{0.4}InCl_6$:Bi³⁺ double perovskites.

Temperature-dependent luminescence studies

Temperature-dependent PLE&PL spectra

High-pressure measurement studies

450 22.7 GPa **u.**) 20.3 GPa 18.5 GPa ____ 400 17.1 GPa 16 GPa 14.2 GPa **2** 350 13 GPa 11.3 GPa 9.4 GPa Sity **2**50 **5.5 GPa** 2.5 GPa 2.03 GPa 200 1.2 GPa 0.9 GPa 0.5 GPa 0.3 GPa 0.2 GPa 150 20 10 15 100 200 300 400 500 **Pressure (GPa)** Wavenumber (cm⁻¹) 20.3 GPa Cs₂Na_{0.6}Ag_{0.4}InCl₆ 1150 1150 👗

SUMMARY

• $Cs_2Na_{0.6}Ag_{0.4}InCl_6$: Bi³⁺ exhibiting warm white light broad emission spectrum (400-800 nm) attributed to self-trapped excitons caused by a distortion of AgCl₆ octahedra due to Jahn Teller effect.

• The highest-frequency mode at 296.9 cm⁻¹ can be assigned to the symmetric stretching A_{1g}vibration of InCl₆ octahedra.

• The mode at 142.2 cm⁻¹ can be assigned the asymmetric stretching **E**_g vibration of InCl₆ octahedra.

• High-pressure XRD and Raman

