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Introduction

« A recent study [R. Hanai et al., Phys. Rev. Lett. 122, 185301, 2019] highlighted a first-order-like dissipative phase
transition in a two-component quantum system with an exceptional point coinciding with phase boundary endpoint.
Here we show a disparity between the exceptional point and the endpoint which is closely connected to the stability of
solutions.

» We present a general phase diagram describing different phases in a generic nonlinear binary system. In a certain range
of parameters, the system converges to a limit cycle, which vanishes at the exceptional point. Our results emphasize the
connection between phase transitions, bistability, and exceptional points of non-Hermitian nonlinear systems in general,
providing insight into strongly coupled light-matter systems in particular.

« We find that the model under investigation is incomplete unless nonlinear saturation of gain is taken into account.
Importantly, saturation increases the complexity of the phase diagram and leads to the appearance of bistability.

« We find that while the first-order-like phase transition line with an endpoint is present, the equivalence of the endpoint
to an exceptional point as found in [Hanai] is no longer valid in the general case. The phase diagram of [Hanai] can be
vestored in the limit of strong saturation
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Stability Analysis and Periodic Solutions

In order to perform the stabili write the equations of motion for fields dvbc and dyox in
terms of densities nx ¢ and relative phase gox. It yields dng = Fi(nx,ne, ¢cx), dnx = Fa(nx,ne, ¢ox) and

dupox = Fa(nx.ne, pox) where
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This can occur when n$® = /3/g1, that is, whenever
the system is blue-detuned (6 > 0). On the other hand,
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Fig. 5. Determination of the number of steady state solutions. Imaginary part of eigenvalue energy (Im[E]) versus exciton
density \w‘\,‘f is shown. Steady state solutions correspond to Im[E]=0. Stable and unstable solutions are labeled as S and US,

colors indicate the real part of the energy. In
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(a) and (b) the exceptional point (EP, red star) 0.1 05 1 1.5
and the endpoint of the first-order-like phase p/AQ H
transition (ET) are shown. At the C-Line two / R Phase D,agram at Large 92
solutions coalesce and periodic solution (c) (d)
vanishes. Cross-sections of constant with (e)
different numbers of thresholds (th) are 2 ) 0
marked with horizontal lines. In (c) we show b 3 1 2 / o 93 (a) (b)
the case 7,=0, for which the energy Cf:l Su C;CI 1 Fig. 6. Example of _phase diagrams at
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a turning point of a bistability curve. A stable ' L = L5 endpoint of phase transition are marked
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Stable solutions are marked with S and black -1 SL _XEP sy s i ¢ along path (i), there is only one solution
lines, while unstable solutions are marked ] 15 N 108 0 6 1 152 0.5 - at either side of the exceptional point.
with US and orange lines. Panel (d) shows real - - ) ' P hQR 2 1 Increasing 7. along the path (j), three
part of energy for different pumping and P/hQR 70/QR so[ut;ions can coalesce at the exceptional
decay rates. The ET point corresponds to the y ( e 0105 1 15 2 point.
transition to bistability at >, This cross- e > “ZR ( ) e < QR (D p/ﬁQR p/hQ
section is depicted in panel (e), while in panel 2 2 2
(f) we show the case 7.<Q, where the = < [3 2 301
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Using parameters: §=0.2 hfsz‘ 9,=0.1 F;, ET * We showed that, contrary to previous understanding, non-Hermitian two-mode systems exhibit first-order-like dissipative
B,=0,E.=0.282and g,=0.3g,. 1 -1 phase transition with an endpoint that in general does not coincide with the exceptional point.
1 1.5 2 0.5 1 1.5 2
p/HS p/HY * While the endpoint is where the bistability appears, the exceptional point is where the stable and unstable solutions
R R coalesce. We demonstrated that first-order-like phase transition may occur in the weak coupling regime, and that for
certain values of parameters one can predict oscillatory solutions, which converge to a stable exceptional point.
L y * We found a regime of limit cycle solutions due to a Hopf bifurcation, which eventually disappear at an exceptional point.
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