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Figure 1: Condensate in the canonical ensemble, in a 1D harmonic potential trap. New hybrid approach shows excellent agreement compared with Bogoliubov approximation.

1 The method

Fock State Sampling (FSS) is a new method for calculating BEC fluctuations developed by our group, which
was already put to the test in [1]. It is essentially a Metropolis algorithm that samples multimode Fock state
configurations in a chosen statistical ensemble, with an innovative update rule that deals efficiently with the high
energy tails.

Single step of the FSS method: one draws two states – one from which an atom might be taken (index j) and one
in which the atom may land (index j ′) with probability distribution proportional to nj (nj ′ + 1). The new state
is accepted only if a random number r drawn from a uniform distribution in [0, 1] is smaller than the Boltzman
factor b (Ecurrent , Ecandidate) = exp (−β (Ecurrent − Ecandidate)).
In the interacting case with general hamiltonian

Ĥ = Ĥ0 +
g

2

∫
Ψ̂(x)†Ψ̂(x)†Ψ̂(x)Ψ̂(x)dx,

where Ψ̂(x) = ∑i ψi(x)âi are the field operators constructed from annihilation operators âi and the corresponding
ψi(x) single particle eigenfunctions (“orbitals”) of the non-interacting Hamiltonian Ĥ0, ψi(x) form an orthonormal
basis on the underlying single particle Hilbert space.
To compute the candidate’s energy the following perturbative approximation is used:

E = ⟨φ|Ĥ|φ⟩ = ∑
i
Eini +

g

2
∑
i
hii(ni − 1)ni + 2g

∑
i<j
hijninj

where φ are the eigenstates of Ĥ0 which allows for efficient computation of ∆E once the overlaps hij have been
pre-computed.

2 Microcanonical vs Canonical Fluctuations in a 1D box [2]
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Fluctuations of a weakly-interacting Bose gas containing N = 100 atoms in a 1D ring trap. The variance of N0 as

a function of temperature is obtained from several different approaches: FSS method, classical field approximation,
and Bogoliubov approach. A microcanonical calculation shows a significant suppression of the fluctuations. (inset)
Variance at a low temperature T = 5 (orange, axis on the right) and at the temperature of maximal fluctuations
(blue, axis on the left) as a function of the interaction strength g, obtained with the FSS method in the canonical
ensemble. The arrows indicate the appropriate axis.

3 Characteristic temperature shift in a 3D box [3]
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Relative standard deviation of the BEC atom number for an interacting gas (coloured points) for various total
numbers of atoms, and interaction strengths. All points are rescaled by the maximal value of the fluctuations in
the non-interacting case. Results for systems with the same gas parameter are marked with the same colour, i.e.
aρ
1
3 corresponds to 0.005 (blue), 0.01 (red), 0.015 (orange), 0.02 (green) . The quantity Tp,0 is the temperature of
maximal fluctuations of the non-interacting gas and the symbol ”X” marks the reference point – the maximal BEC
fluctuations of the non-interacting gas. The atom number is in the range N = 100, 200, ..., 1000, 2000, ..., 10000.
The inset shows an overview of the entire temperature range with the results for the non-interacting gas (dashed
lines). We obtain the relative characteristic temperature shift:

δTp ≈ (2.039± 0.014)
(
aρ1/3

)
, (1)

4 Hybrid approach

Classical fields approximation: has superpositions but suffers from UV divergency (cutoff problem).
Fock State Sampling: no cutoff problem but lacks orbital superpositions.
Let’s combine advantages of both methods and introduce an effective field: φ(x) = ∑i αiψi(x), where αi ∈ C

and |αi|2 = ni ∈ Z+ are discrete occupations of orbitals that also encode relative phases between them. In hybrid
approach we change energy evaluation method the one inspired by classical fields:

E =
∑
i
Eini +

g

2

∫
|φ(x)|4dx.

However, each metropolis step remains almost the same as in FSS, the only addition is randomization of phases of
αi. Thus combining the approaches preserve cutoff independence with the added benefit of being able to correctly
handle systems where interacting BEC mode is different than non-interating BEC.
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