FROM DIOXYGEN TO SUPEROXIDE: PERIODIC DFT MODELING AND EPR STUDY OF PARAMAGNETIC Zn⁺ & Zn²⁺–O₂⁻ SPECIES IN MFI ZEOLITE

Paweł Rejmak, ¹ Aneta Krasowska,² Piotr Pietrzyk²

¹Institute of Physics, Polish Academy of Sciences, Warszawa, Poland ²Faculty of Chemistry, Jagiellonian University, Kraków, Poland

SCOPE

 O_2^{-} superoxide radical anion plays an important role in catalysis, environmental chemistry, and biochemistry. One of the possible ways to generate these radicals is O_2^{-} adsorption on low-valent transition-metal ion centers dispersed in porous materials, such as zeolites.* We present a theoretical and spectroscopic analysis of an excellent example of a system defined by monovalent \mathbf{Zn}^+ ions, which is an unusual oxidation state for this element. This work aims to support computationally and refine the experimental EPR studies involving the adsorption of isotopically labeled ¹⁷O molecular oxygen on Zn+ exchanged MFI zeolite obtained by chemical vapor deposition. *A. Oda, H. Torigoe, A. Itadani, T Ohkubo, T. Yamura, H. Kobayashi, Y. Kuroda, J. Am. Chem. Soc. 2013, 135, 18481.

EXPERIMENTAL

COMPUTATIONAL

 \checkmark Zn⁺ ions were generated within commercial sample of MFI zeolite by chemical vapor deposition of metallic Zn @ 400 °C.

 $Zn_{(g)} + H^+_{zeol} \rightarrow Zn^+_{zeol} + 1/2H_{2(g)}$

 \checkmark O₂⁻⁻ were generated by the adsorption of O₂, both natural & ¹⁷O enriched (70%), which allowed measurement of hyperfine coupling constants

 $Zn^+_{zeol} + O_{2(g)} \rightarrow (Zn^{2+} - O_2^{-})_{zeol}$

- \checkmark Both Zn⁺ & O₂⁻⁻ species were monitored by EPR spectroscopy: Bruker Elexsys E580 spectrometer, X-band, I-10 mW microwave power, frequency & amplitude modulations set to 100 kHz & 0.2 mT, respectively.
- \checkmark MFI unit cells with single Al³⁺/Zn⁺ pair or (Al³⁺/Zn⁺ & 2Al³⁺/Zn²⁺) per unit cell $T_{96}O_{192}$, (T = Si, Al), Al³⁺ put in TI &/or T7 crystallographic sites.
- \checkmark Periodic models were optimized at DFT/PBE level using Turbomole code (Riper module): Γ point only, def2-TZVP basis @ Zn & dioxygen O atoms, pob-TZVP @ remaining ones.
- \checkmark Cluster models consisting of of 22T atoms were constructed & employed in DFT/BHLYP calculations of EPR g and A tensors, using ZORA approach, basis sets: CP(PPP) @ Zn, EPR-III @ O_2^{-} & TZVP @ remaining atoms.

Comparison of experimental EPR data and DFT/CAM-B3LYP results

Contor			g _{xx}	g _{yy}	g _{zz}	A _{xx} / MHz	A _{yy} / MHz	A _{zz} / MHz
Center		²⁷ Al shf (/ = 5/2)						
7n(I)/7SM-5	EPR		1.994	1.998	2.002	2.88	2.80	3.89
	DFT		1.988	2.003	2.010	2.82	3.06	4.06
Zn(II)O ₂ ⁻ /ZSM-5						¹⁷ O hf (<i>I</i> = 5/2)		
	FDR	56.5%	2.003	2.010	2.061	215.3	16.9	17.3
		43.5%	2.002	2.009	2.037	213.0	12.5	16.0
η²-O₂ [–] (side-on)	DFT		2.001	2.014	2.060	257.0	20.2	15.7
						257.5	20.1	15.6
η ¹ -O ₂ ⁻ (end-on)			1.993	2.005	2.069	176.1	8.7	0.2
						320.9	36.8	27.4
μ ² -(O , O) (bridge)			1.992	2.010	2.033	220.3	12.6	2.1
						297.9	23.9	16.9

RESULTS

- \checkmark The best agreement between exp. & DFT found for O₂⁻⁻ radical adsorbed on Zn²⁺ site in η^2 -O₂⁻⁻ side-on manner with two equivalent O atoms, where Zn²⁺ ion is tetrahedrally coordinated by radical & zeolite O atoms.
- $\checkmark \eta^{1}$ - O_{2}^{-} end-on coordination slightly less stable (we cannot exclude possible saddle point), worse $g_{xx} \& A$ values agreement (2 non-equivalent O atoms) with EPR data.
- \checkmark The strongest O₂ binding predicted for bridging, but the presence of Zn⁺/Zn²⁺ pairs is unlike in low Al zeolite, again poor agreement of g_{xx} & A values with EPR data.

ACKNOWLEDGEMENTS

We kindly acknowledge financial support provided by Grant Sonata Bis 7 no. 2017/26/E/ST4/00794 from National Science Centre, Poland. This work was supported in part by PL-Grid Infrastructure.