An approach for Analyzing 3D Strain Distribution in Hybrid and Hetero
Nanowires through NBED and FEM lterative Model Fitting
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Highly Strained Semiconductor Nanowires Fabrication of ZnTe/(Cd,Zn)Te hetero-nanowires Strain engineering
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Bending of ZnTe/ZnMgTe NWs after shell epitaxy

nanowires How we can experimentally determine the 3D strain state
P. Wojnar, et al., Nanotechnology 24, 365201 (2013). in individual bended core-shell NW?
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- higher level of elastic strain without defects formation
can be reached, comparing to 2D epilayers
- Thanks to surface energy SEM image of ZnTe nanowires on Si substrate
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Nano Beam Electron Diffraction Circular Hough transform for solving disk size variation issue
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|ghkl The thickness gradient in NW affect on diffracted intensities. This may Transform

Twin A + Twin B lead variation of diffracted disk radius. Circular Hough transform (CHT) with variable
CCD scyntylator radius solves the problem of the variation of the

disk radius
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Radial hetero-nanowire: ZnTe core, CdZnTe shell STEP | Projected Strain mapping
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Zone axis and off-axis diffraction STEP Il Determination a |, a; local misorientation, and local thickness FEM modeling of core-shell hetero-nanowires
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4 ™. Solver Configurations

Experimental COMSOL Multiphysics
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The scheme represents definition of misorientation angles. o
—angle denote in-plane component of lattice bending and a |,
a, - rotation of the xy plane around [110] a; —out of-plane components. The sign “+” and “-” represents

a | - rotation of the xy plane around [112] 111 direction of bend.
a, - twist of the xy plane around [112]

Correlation map

Initial model

STEP lll: Iterative Fitting of FEM and experimental maps

We have: 1. Finding Cd content in the shell: (a) 15 —1
* Asymmetrical core-shell Fitting only min and max strain values on experimental and i leore=17 NM 78deg 7.8
configuration simulated &, maps. 13- a,=4.1 deg
* Core ->ZnTe Min and max values on &, map depend mainly on chemical e | /
* Shell->Cd,Zn, ,Te composition but not on the radius and position of the core. = 1k
* Radius of whole c-s the NW 2. Finding the core positions within the NW (x,y): -
* Performing FEM simulation for different core position (x,y) for :g \ (-4.5:8.7)
each core radiusr. @ 9r f + :
We still need: * Finding which (x,y) positions correspond experimental in-plane O a=7.8 deg
* Cd contentin the shell? a;, = 7.8 deg and out-of-plane bending @, = 4.1 deg of the 7
* Core radius? NW. > For each core radius r we obtained (x,y) positions that
* Core position in the NW (x,y)? that correspond experimental bending angles: r(x,y) sl v . b
3. Finding the core radius r: 08 6 4 2 0
* And we make same additional Comparing of the FEM simulated &, maps for defined above core Position x (nm)
assumption that the taper of the parameters r(x,y) to the experimental map. The determination of the core position (x,y) within the NW.
core is the same as the nanowire This is possible due to the sharp transition region on the £, map. '(a) —isolines showing the reIationsh-ip between the C?FE position of the radius of 17 nm
in the NW and bent angles , (blue line) and a, (red line).

Those lines' intersection corresponds to the bent NW's core position.

(b) — the scheme of the asymmetric core-shell NW. radial strain map axial strain map in-plane component of out-of-plane component
Cross-section of best fit simulated core-shell NW = quasi/pseudo-Tomography bending of bending
from one projection ® limited radiation damage, the same object structure
o ’ &y
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s*Improved algorithm for the detection of the centres of diffraction disks based on the Sobel filtering and Hough
transform suitable to CCD cameras and high thickness gradient (GMS script Sobel+Hough + nano-twin filter)
**We demonstrate the method for the 3D strain reconstruction in the core-shell NW with sub-nanometer spatial

egel, = St dike resolution based on single zone axis diffraction.
gate “*Object conservation due to limited dose, for radiation sensitive materials
oors grel  _ diilty —aizn, “*Full dynamic simulations are needed
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