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Abstract

Developing quantum technologies aim to employ quantum phenomena in prac-
tical implementations. For instance, more robust quantum cryptography and
information tasks, such as self-testing, randomness amplification and expan-
sion, quantum key distribution, and quantum sensing and metrology. Spin
squeezed states are such quantum states particularly useful for sensing. They
provide improved phase sensitivity over the classical shot-noise limit ∆ϕ ∝
1/

√
N . Their quantum fluctuations for the collective spin operator are re-

duced in one direction at the expense of the fluctuations in the orthogonal
direction. This allows for improvement of the phase sensitivity of the state
along the reduced fluctuations direction. Spin squeezed states are advanta-
geous over other highly entangled states for metrological applications because
they have a sufficiently large mean spin value and are resilient to different
types of decoherence processes. While spin squeezed states have been pro-
posed theoretically and even realized experimentally, states entangled close to
the theoretical bound ∆ϕ ∝ 1/N are still out of reach. In this thesis we present
different setups of ultra-cold atoms in the optical lattice, designed as poten-
tially simple experimental implementations, for dynamical spin squeezing gen-
eration from classical coherent states. We propose different additional terms
over the bare two-component Fermi– and Bose–Hubbard models like long-range
dipolar interactions, spin-orbit coupling, contact interactions anisotropy or in-
homogeneous magnetic fields to generate effective models capable of generating
maximally squeezed spin-1/2 states. We also analyze how imperfections in the
different models affect entanglement generation through parameter detuning,
perturbative regimes, or particle losses at the preparation stage.

i



Abstract (Polish)

Rozwój technologii kwantowych ma na celu wykorzystanie zjawisk kwantowych
w praktycznych implementacjach, przykładowo w kryptografii kwantowej i
informacji (samotestowanie, wzmocnienie i ekspansja losowości, dystrybucja
klucza kwantowego) lub metrologii kwantowej. Stany ściśnięte spinowo to
stany kwantowe, które są szczególnie przydatne do niezwykle precyzyjnej metro-
logii. Zapewniają one czułość fazową lepszą w porównaniu z klasyczną granicą
szumu śrutowego ∆ϕ ∝ 1/

√
N . Ich fluktuacje kwantowe dla kolektywnego

operatora spinowego są redukowane w jednym kierunku kosztem fluktuacji
w kierunku ortogonalnym. Pozwala to na poprawę czułości fazowej stanu
wzdłuż kierunku zmniejszonych fluktuacji. Stany ściśnięte spinowo są ko-
rzystniejsze od innych silnie splątanych stanów w zastosowaniach metrolog-
icznych ponieważ mają wystarczająco dużą średnią wartość spinu i są bardziej
odporne na różne typy procesów dekoherencji. Podczas gdy stany ze ściśniętym
spinem zostały zaproponowane teoretycznie, a nawet zrealizowane w układach
ulata-zimnych atomów, to ich praktyczne zastosowanie, w szczególności blisko
teoretycznej granicy ∆ϕ ∝ 1/N , jest nadal poza zasięgiem obecnych ekspery-
mentów. W niniejszej rozprawie rozważamy układy ultra-zimnych atomów
umieszczonych w periodycznej sieci optycznej, zaprojektowane jako potencjal-
nie proste implementacje eksperymentalne do dynamicznej generacji stanów
scisnietych spinowo. Rozważając dwuskładnikowe modele Bose– i Fermi–
Hubbarda, proponujemy nowe mechanizmy w celu wygenerowania efektywnych
modeli zdolnych do generowania maksymalnie ściśniętych stanów. Te mecha-
nizmy są wytważane przez fizyczne procesy, t.j. długozasiegowe oddziaływa-
nia dipolowe, sprzężenie spin-orbita, anizotropia oddziaływań kontaktowych
lub niejednorodne pola magnetyczne. Analizujemy również, w jaki sposób
niedoskonałości w przygotowaniu stanów poczatkowych lub parametrów mod-
elu wpływają na możliwość wytworzenia stanów ściśniętych spinowo oraz ich
użyteczność do praktycznych zastosowań.
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Chapter 1

Introduction

We define the state of a quantum system by a combination of configurations
in a given Hilbert space, which yields a certain probability distribution. Such
space of configurations can be probed using certain observables that can be
measured. For instance a wave-packet of light moving across space can be
characterized by the observables x̂, p̂. These observables are conjugate if their
commutator [x̂, p̂] ≡ x̂p̂ − p̂x̂ ̸= 0. Their uncertainties obey the inequality
∆x̂∆p̂ ≥ ℏ/2. We certify a minimal variance state when the inequality satu-
rates to an equality, as no quantum state can violate this restriction. Moreover,
we can find states were the variance of one observable is reduced with respect to
the corresponding conjugate, while saturating the previous inequality. These
kind of states yield a sub-binomial distribution, which is tighter in a given
direction than a binomial distribution. These states are usually referred to as
squeezed states, as a reference to the deformation of the probability distribu-
tion with respect to the state where the variance is isotropic in the phase space
of interest.

In this work, we refer to spin as the quantum number associated with
the intrinsic angular momentum of an atom. While this has implications on
the statistics of the atoms, as bosons are characterised by integer valued spin
and fermions are characterised by half-integer valued spin, we will take the ap-
proach of isolating a number of internal energy levels of the atoms to construct
a pseudo-spin manifold. This allows us to, for instance, describe spin-1/2 dy-
namics while using two-level bosons.

The change in statistics allows us to construct different dynamics that
are advantageous for squeezing the probability distributions of a state in the
pseudo-spin phase space. We refer to this concept as spin squeezing. As we
explain later on, defining spin squeezing can be challenging due to the inherent
symmetries of the spin phase space. We can nevertheless find satisfactory and
compact definitions for metrological purposes [6–8].

Spin squeezed states offer improved sensitivity on spectroscopic measure-
ments in contrast with other classes of highly entangled states [9]. In fact,
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CHAPTER 1. INTRODUCTION

spin squeezing itself can be used as a relevant entanglement witness in many
scenarios, as it only requires collective measurements and is quite robust to
different decoherence channels [10–12]. Because of its collective measurement
nature, spin squeezing is also useful in the study of quantum phase transitions
[13, 14] and quantum chaos [15, 16]. It is no surprise that spin squeezing is
regarded as one of the main quantum resources to probe fundamental physics
questions like the electric dipole moment or dark matter [17].

Squeezing generation has been proposed through various methods like feed-
back loops in quantum non-demolition measurements [18–20] or tweezer arrays
[21], quantum state transfer from light to atoms [22, 23], cavity feedback [24],
or interactions in magnetic microchip traps (atom chips) for neutral atoms
[25]. However, we will focus on dynamical generation of spin squeezing from
an uncorrelated state as proposed in the pioneering work of Kitawaga and
Ueda in 1993 [6].

To certify spin squeezing, we must first find an adequate definition of it.
While bosonic squeezing is well constrained to a given complex plane in which
squeezing is easy to represent and derive, spin squeezing happens in the phase
space corresponding to the SU(2) symmetry of the spin components. This
requires more careful analysis and generalization to arbitrary spin lengths be-
comes non-trivial [26]. We will review some of the main definitions of spin
squeezing, but we will focus on the well-known definition focused on spectro-
scopic phase sensitivity for spin-1/2 atoms [7]. This definition is very compact
and makes intuitive sense of the main features of spin squeezing, while also
having a well defined lower bound to compare our results with [27].

We pay special attention to ultra-cold atoms in the optical lattice as our
implementation platform of reference, since it provides high tunability and
control while allowing the inclusion of many modifications that make it an
ideal quantum simulator for other platforms [28, 29]. In fact, spin squeezing
in the optical lattice has received special attention in recent years for its direct
application to quantum clocks and quantum sensors [30–32]. Moreover, this
platform offers enticing spatial resolution and constrains at the single particle
level. Such advantages allow us to study fundamental aspects of correlations
under short and long range interactions in ranges of parameters inaccessible
to other setups [32, 33]. The optical lattice is also attractive as a platform in
which to certify correlations by local measurements. These are not included in
the typical definitions of spin squeezing, but can help in probing entanglement
more exhaustively.

While some of the results derived in this work are applicable to higher di-
mensional systems, we mainly concern ourselves with one-dimensional systems.
Low dimensional systems are simpler to describe, analyse and engineer.They
also have an advantage in constraining the degrees of freedom such that we
may find different behaviour with respect to higher dimensional systems.

States composed of particles with spin j > 1/2 are also subject to spin
squeezing [34, 35] and are experimentally relevant [36]. In fact, spin squeezing

2



CHAPTER 1. INTRODUCTION

definitions have been generalised to large spin in the past and are the main
subject of current works [26, 37, 38]. Nevertheless, we limit our analysis to
spin-1/2 particles to obtain a solid understanding of the phenomena and serve
as a stepping stone for richer studies in higher spin manifolds in the future.

We employ different kinds of external fields and couplings among atoms
in the optical lattice to generate the required correlations during dynamics
and obtain highly squeezed states. In the first chapters of this work we intro-
duce the main concepts and tools to perform the required approximations and
obtain effective models which describe squeezing dynamics in the rest of the
work. In the following chapters we explore long-range dipolar interactions in
the superfluid phase of the Bose–Hubbard model, spin-orbit coupling in the
Mott-insulating phase of the Fermi–Hubbard model, and anisotropic contact
interactions as well as inhomogeneous magnetic fields in the Mott-insulating
phase of the Bose–Hubbard model in search of these effective models.

Throughout this work, we set ℏ = 1 to ease the notation and define M
as the system size, N as the number of particles and S as the spin quantum
number.

3





Chapter 2

Spin Squeezing

2.1 Bosonic coherent states

The origin of spin squeezing can be traced back all the way to the concep-
tion of coherent states by Glauber in 1963 [39]. Coherent states were develop
to study the correlation properties of the electromagnetic field [40, 41], but
they rapidly became powerful tools to tackle other problems after being con-
structed for arbitrary Lie groups [42, 43]. Over the years, coherent states found
applications in calculations involving path integrals [44], thermodynamics [45],
decoherence [46, 47], the quantum-classical correspondence problem [48, 49],
and many more areas [50, 51]. A fantastic overview of coherent states and
their applications can be found in [52].

The inception of coherent states spur from the insight that part of the elec-
tromagnetic field operator can be decomposed in the eigenstates of the bosonic
(since we are taking about light) annihilation operator. We may think this was
a simple assumption, but at the time it was very innovative since the scientific
community was focused on Hermitian operators, as they are experimentally
observable.

We have defined the coherent states |α⟩ as eigenstates of the bosonic an-
nihilation operator â such that

â |α⟩ = α |α⟩ . (2.1)

We can also define them as the displaced form of the ground state

|α⟩ = D̂(α) |0⟩ , (2.2)

where D̂(α) is a unitary operator acting on the annihilation operator â, such
that

D̂−1(α)âD̂(α) = â+ α. (2.3)

By wisely applying D̂−1(α) in eq. (2.3) and eq. (2.2) we can recover the
definition in eq. (2.1). Continuing with the derivation, we choose a global
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2.2. SQUEEZED STATES CHAPTER 2. SPIN SQUEEZING

phase for the coherent states by setting D̂(0) = 1. By expanding eq. (2.3)
with an infinitesimal displacement dα wet get

D̂(dα) = 1 + â†dα− âdα∗. (2.4)

We can then calculate the finite displacement as

D̂(α) = eαâ
†−α∗â = e−

1
2
|α|2eαâ

†
e−α∗â. (2.5)

With this result and using the definition of the n-th excited state |n⟩ =
(â†)n |0⟩ /

√
n!, we can derive [52]

|α⟩ = e−
1
2
|α|2∑

n

(α)n√
n!

|n⟩ . (2.6)

Bosonic coherent states construct an over-complete basis, meaning they
are not guaranteed to be orthogonal but describe the full Hilbert space of
the system [53]. Moreover, they are all minimum uncertainty states which
satisfy the uncertainty relation ∆x∆p = ℏ/2. This last property is useful for
metrological applications, as they provide the highest accuracy for which ∆x =
∆p. Nevertheless, we can obtain states of increased metrological advantage by
deforming the quadrature in phase space of a coherent state. As we described
before, the resulted states are squeezed.

2.2 Squeezed coherent states

Bosonic coherent states show minimal uncertainty, but they have in princi-
ple equal quantum fluctuations for two conjugate variables like position and
momentum. While already useful, we can still increase the precision of a mea-
surement by reducing the quantum fluctuations or variance of one variable by
sacrificing the other. This idea of reducing the quantum fluctuations to provide
an enhancement in precision is traditionally referred to as squeezing, since we
squeeze the probability distribution in the direction of interest in phase space.

These states of light have received much attention with their key role in the
detection of gravitational waves by the LIGO [54] and Virgo interferometers
[55], as sub-atomic size measurements are needed to detect such phenomena
[56].

To squeeze the coherent states, we define the squeeze operator as

Ŝ(ξ) = exp

{
1

2

(
ξ∗â2 − ξâ†2

)}
, (2.7)

where ξ = reiθ is an arbitrary complex number. Notice a certain resemblance
with the displacement operator in eq. (2.5), but we create or annihilate two
bosons. In fact, the squeeze operator was first conceived for the radiation
states of idealised two-photon lasers [57].
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We then define a squeezed coherent states as the application of the squeeze
operator on a bosonic coherent state |α⟩

|α, ξ⟩ = Ŝ (ξ) |α⟩ = Ŝ (ξ) D̂ (α) |0⟩ . (2.8)

It is convenient to obtain an operator for which these are eigenstates, much
like coherent states are eigenstates of the annihilation operator. Since we are
also working with the coherent states, a transformation of the annihilation
operator using the squeeze operator becomes ideal, since Ŝ(ξ)âŜ†(ξ) |α, ξ⟩ =
Ŝ(ξ)â |α⟩ = α |α, ξ⟩. Thus, by expansion of the exponential operator Ŝ(ξ) we
obtain the canonical transformation

Â = Ŝ(ξ)âŜ†(ξ) = µâ+ νâ†, (2.9)

where µ = cosh r and ν = sinh reiθ.
From the creation and annihilation operators we can recover the position

and momentum operators as q̂ = (â+ â†)/
√
2 and p̂ = (â− â†)/(

√
2i). Then,

we can calculate the variances of this operators using eq. (2.9) to obtain

(∆q̂)2α,ξ (∆p̂)
2
α,ξ =

1

4

(
1 + sinh2 2r sin2 θ

)2 ≥ 1

4
. (2.10)

The squeezed coherent states will show minimum uncertainty when r = 0
or θ = 0 or π. The case r = 0 is trivial, as we simply recover the coherent
states. On the former case, we either obtain

∆q̂ =
e−r

√
2
, ∆p̂ =

er√
2
, (2.11)

for ξ = rei0 = r, or

∆q̂ =
er√
2
, ∆p̂ =

e−r

√
2
, (2.12)

for ξ = reiπ = −r. For the results ξ = ±r, we obtain the desired squeezing of
the probability distribution, as the quantum fluctuations in one variable are
reduced with e−r at the expense of the increase in the conjugate variable. In
the context of bosonic coherent states, r is naturally referred to as the squeeze
parameter.

2.3 Pseudo-spin and collective operators

It becomes natural to wonder if coherent and squeezed states can be found
in other Lie algebras. This is indeed the case, and we will now explore the
scenario of the spin 1/2, which can be mapped from a two-level atom. Moving
forward we will use atoms as our particles of interest in the rest of this work, so
we will refer to them as such. But first, we must define the operators defining
such an algebra to describe said states in the spin phase space.

7
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We define the pseudo-spin of our atoms from a well defined subspace com-
ing from the internal degrees of freedom of the atoms. Throughout this work,
we will only consider atoms with two isolated internal states labelled as |↑⟩ , |↓⟩.
Any superposition of such states belongs to the SU(2) Lie group, so we can de-
scribe their generator operators using the Pauli matrices σα, α ∈ x, y, z. The
Pauli matrices obey the commutation relations [σα, σβ] = 2iεαβγσγ , where
εαβγ is the Levi-Civita symbol. This is because the single-atom operator
must obey the usual angular momentum commutation relations, respecting
the SU(2) algebra. We then define the spin-1/2 operators as

Ŝα
j =

1

2
σαj , (2.13)

where α indicates one of the three generators of the algebra {x, y, z} and j is
the label for an atom. This still holds when multiple atoms occupy the same
position and internal state, as the corresponding Hilbert space is a direct sum
for individual atoms.

It is practical to represent the spin operators in terms of the creation and
annihilation operators

Ŝx
j =

1

2

(
Ŝ+
j + Ŝ−

j

)
, (2.14)

Ŝy
j =

1

2i

(
Ŝ+
j − Ŝ−

j

)
, (2.15)

Ŝz
j =

1

2

(
û†j ûj + d̂†j d̂j

)
, (2.16)

where ûj (d̂j) corresponds to the atom annihilation operator of state |↑⟩ (|↓⟩)
at site j and Ŝ+

j = û†j d̂j , Ŝ
−
j = d̂†j ûj . Since this operators are constructed by

a pair of creation-annihilation operators, they not only conserve atom number
but parity. Thus, there is no need to distinguish between fermionic or bosonic
systems at this stage.

It follows that the collective spin of the system can be equally described as
a direct sum of the Hilbert space of a collection of spins, obtaining

Ŝα =

N∑

j=1

Ŝα
j . (2.17)

The collective spin operator thus describes the spin quantum number of max-
imal value S = N/2, where N is the number of spins in the system. The
collective state can be easily visualised if we assume the state is separable,
but it becomes harder to picture when quantum correlations appear. In such
case, we can rely on a quasi-probability distribution like the Husimi function
Q(θ, ϕ) to portray the correlations of the system over the Bloch Sphere with
radius equal to the expectation value of the mean spin direction operator.
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2.4 Spin coherent states

We have defined the bosonic coherent states as a result of the diagonalization
of the boson annihilation operator. Naturally, we may ask ourselves if we can
define similar coherent states for atomic particles defined by their spin [58, 59].
The initial construction of the spin coherent states in quantum optics relied
on the application of a classical electromagnetic field onto the spin particles
of interest. The goal here was to see if we could retrieve the coherent states
by identical principles of their bosonic counterpart, since the electromagnetic
field could be the indirect generator of such states.

We can express the Hamiltonian of an assembly of N two-level atoms in-
teracting with a classical electromagnetic field using the collective operators
as

Ĥ = ΩŜz + λ(t)Ŝ+ + λ∗(t)Ŝ−. (2.18)

When the driving field λ(t) is turned off, the Hamiltonian reduces to

Ĥ0 = ΩŜz, (2.19)

which is, by construction, diagonal with respect to the angular momentum
eigenstates |S,m⟩ where m ∈ [−S, S], such that Ĥ0 |S,m⟩ = mΩ |S,m⟩. We
also refer to these eigenstates as Dicke states.

We can then express the original Hamiltonian in the interaction picture as

ĤI = eiĤ0t
(
λ(t)Ŝ+ + λ∗(t)Ŝ−

)
e−iĤ0t, (2.20)

= i
(
ζ(t)Ŝ+ − ζ∗(t)Ŝ−

)
, (2.21)

with iζ(t) = λ(t)eiΩt. If we then initialise the evolution of the system with the
natural choice of the lowest energy state |S,−S⟩, we obtain

|ΨI(t)⟩ = eζ(t)Ŝ+−ζ∗(t)Ŝ− |S,−S⟩ , (2.22)

up to a given phase factor.
If we compare this result with the displacement operator in eq. (2.5) which

generates the bosonic coherent states, we can see a clear path to compute the
spin coherent states. The first step is to identify ζ(t) → ζ as our parameter
to generate the coherent states and split the unitary operator eζŜ+−ζ∗Ŝ− using
the Baker–Campbell–Hausdorff formula to obtain

eζŜ+−ζ∗Ŝ− = eτŜ+eln(1+|τ |2)Ŝze−τ∗Ŝ− . (2.23)

with τ = tan |ζ|ei arg ζ . The action of the lowering operator Ŝ− on the state
|S,−S⟩ vanishes, so the computation reduces to expanding the spin coherent

9



2.4. SPIN COHERENT STATES CHAPTER 2. SPIN SQUEEZING

state in terms of the angular momentum eigenstates |S,m⟩ using the ladder
operator such that

|S,m⟩ =
√

(S −m)!

(2S)!(S +m)!

(
Ŝ+

)S+m
|S,−S⟩ . (2.24)

Then, we obtain

|S,−S⟩ζ = eζŜ+−ζ∗Ŝ− |S,−S⟩ ,
= eτŜ+eln(1+|τ |2)Ŝze−τ∗Ŝ− |S,−S⟩ ,
= (1 + |τ |2)−SeτŜ+ |S,−S⟩ ,

= (1 + |τ |2)−S
S∑

m=−S

(τ Ŝ+)
S+m

(S +m)!
|S,−S⟩ ,

= (1 + |τ |2)−S
S∑

m=−S

√(
2S

S +m

)
τS+m |S,m⟩ .

(2.25)

If we inspect the unitary operator again, we can see it as a rotation around
a given axis in the x− y plane since Ŝ± = Ŝx ± iŜy. We can parameterise the
operator as

R̂(θ, ϕ) = e−iθ(sinϕŜx−cosϕŜy), (2.26)

for ζ = 1/2θe−iϕ. This means spin coherent states are but rotations of the an-
gular momentum state |S,−S⟩, so they will be eigenstates of the corresponding
rotated Ŝz operator. We can illustrate more clearly the angles of rotation by
performing this rotation on the quantisation axis such that

R̂(θ, ϕ)Ŝz |S,−S⟩ = −S |S,−S⟩ζ ,
= R̂(θ, ϕ)ŜzR̂

−1(θ, ϕ)R̂(θ, ϕ) |S,−S⟩ ,
=
(
− sin θ

(
cosϕŜx − sinϕŜy

)
+ cos θŜz

)
|S,−S⟩ζ ,

(2.27)

which illustrates that the spin coherent state |S,−S⟩ ζ is an eigenstate of the
spin operator R̂(θ, ϕ)ŜzR̂−1(θ, ϕ) along the direction of the vector (S, θ + π, ϕ)
in spherical coordinates. Notice that here we have shown that the spin coherent
state is an eigenstate of the rotated quantisation axis z, not of the ladder
operator Ŝ−, as we could in principle expect from the derivation of the bosonic
coherent states. In any case, we will find more convenient and intuitive to
express the spin coherent states with these angles, so we can rewrite eq. (2.25)
with τ = tan (θ/2) e−iϕ to obtain

10
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|θ, ϕ⟩ ≡ |S,−S⟩ ζ,

=

S∑

m=−S

√(
2S

S +m

)(
cos

θ

2

)S−m(
sin

θ

2
e−iϕ

)S+m

|S,m⟩ .
(2.28)

We can further decompose the coherent states to picture them more easily
as a product state of individual spins polarised in the same direction. To do
so, we can use two key ingredients: First, the lowest angular momentum state
of an ensemble of N spins is uniquely defined as |S = N/2,−S⟩ = ⊗N

j |↓j⟩.
Second, collective rotations act identically on the subspace of each spin. Thus,
the spin coherent states can also be written as

|θ, ϕ⟩ = R̂(θ, ϕ)
N⊗

j

|↓j⟩ =
N⊗

j

(
cos

θ

2
|↓j⟩+ eiϕ sin

θ

2
|↑j⟩
)
. (2.29)

Since the spin coherent states are constructed in a very similar fashion
to the bosonic coherent states, we may expect similar properties like the for-
mation of a complete basis or the fulfilment of minimum variance in Heisen-
berg’s uncertainty. While it can be shown that the former is true, the later
is more subtle since the quadrature changes from a complex plane to an
spherical surface. The uncertainty relation in spin space may be written as
(∆Ŝx)

2(∆Ŝy)
2 ≥ | ⟨Ŝz⟩ |2/4. From the previous definitions of the coherent

states as rotations we can find that, for a spin coherent state |θ, ϕ⟩,
(
∆Ŝx

)2 (
∆Ŝy

)2
− 1

4

∣∣∣
〈
Ŝz

〉∣∣∣
2
=

1

4
S2 sin4 θ cos2 ϕ sin2 ϕ. (2.30)

This result only vanishes when θ = 0, π or ϕ = nπ/2;∀n ∈ Z. Thus, the
uncertainty in the quadrature x − y is minimised only when the state is po-
larised along z or projects onto the x or y directions. In contrast with the
bosonic coherent states, we do not minimise the uncertainty in all directions,
but must choose wisely to take advantage of a particular coherent state. This
issue is immediately solved when we remember that the spin coherent states
are a result of the rotation of the state polarised along Ŝz for the spherical
coordinates (θ, ϕ). Thus, for each coherent state, we find minimum product
uncertainty in the plane perpendicular to it’s polarisation direction, given by
said angles.

2.5 Spin-squeezing parameter

Squeezed states are, broadly speaking, those which reduce the measurement
uncertainty of the observable of interest due to entanglement with respect to an
uncorrelated state, up to the limit set by Heisenberg’s uncertainty principle. In
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the case of the bosonic coherent states, the squeeze operator in eq. (2.7) acting
on a coherent state generates an arbitrarily squeezed state when ξ = ±r; r ∈ R,
where r is the bosonic squeezing parameter. The bosonic squeezed state is
then obtained as in eq. (2.8). This, however, is not so trivially found on spin
systems, as the quadrature depends on the polarisation direction of a given
state and other relevant variables like the spin length may vary during the
squeezing process.

There are different definitions of spin-squeezing depending on their utility
and we will give a brief overview of some of them.

We mainly aim to use spin squeezed states to improve measurement pre-
cision brought by this reduction in uncertainty. Thus, spin squeezing has
immediate applications in Ramsey spectroscopy [9], gravitational-wave inter-
ferometry [55] or atomic clocks [60].

However, we will also acknowledge definitions focused on detection of quan-
tum entanglement in the form of Bell violations, as spin squeezed states are
more resilient to different decoherence channels than highly entangled states
like the GHZ state [10, 61].

To simplify notation, we refer to the mean spin direction, which can be
calculated from three orthogonal directions, as n; as it is normal to the plane
of interest. We refer to the direction of minimal variance orthogonal to n as
min. Finally, we refer to to the orthogonal direction to these previous two as ⊥.
In the next subsections we will write the set of three orthogonal spin operators
in this frame of reference as Ŝn, Ŝmin, Ŝ⊥. We illustrate this coordinate system
in fig. 2.1.

Minimal Variance of Spin

The minimal variance is the main value to measure squeezing and obtain a
metrological advantage. However, depending on the evolution of the system,
the direction in which this variance is found can change in time. While it
is possible to find the direction of minimal variance of the spin components
numerically, this task can be tackled analytically by finding the minimal eigen-
value of the corresponding covariance matrix [62]. Moreover, with this direc-
tion we can obtain theoretical results of the squeezing parameter for models
where the expectation values are known. While this calculation can become a
bit tedious [62, 63], we will simplify it by working on a rotated reference frame
to reduce the optimisation problem to a single variable.

For convenience, let us rotate our reference frame such that the z-direction
coincides with the mean spin direction n,

Ŝx′ =cos θ(cosϕŜx + sinϕŜy)− sin θŜz, (2.31)

Ŝy′ =− sinϕŜx + cosϕŜy, (2.32)

Ŝz′ =Ŝn = sin θ(cosϕŜx + sinϕŜy) + cos θŜz, (2.33)
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Ŝn

Ŝmin
Ŝ⊥

0

Max.

Q
(θ
,φ

)
=
|〈θ
,φ
|ψ
〉|2

Figure 2.1: Bloch sphere representation of the spin directions of interest for a
given squeezed state.

where

θ =arccos
⟨Ŝz⟩√

⟨Ŝx⟩2 + ⟨Ŝy⟩2 + ⟨Ŝz⟩2
,

ϕ =sgn ⟨Ŝy⟩ arccos
⟨Ŝx⟩√

⟨Ŝx⟩2 + ⟨Ŝy⟩2
.

The variance of interest is then calculated in the (Ŝx′ , Ŝy′) plane, so we can
define the minimal variance direction as a vector characterised by the angle α.
The spin operator along the minimal variance direction is then

Ŝmin = n⃗min ·
(
Ŝx′ , Ŝy′ , Ŝz′

)
= cosαŜx′ + sinαŜy′ . (2.34)

with corresponding variance
(
∆Ŝmin

)2
=
〈
Ŝ2
min

〉
−
〈
Ŝmin

〉2
,

=
1 + cos 2α

2

(
∆Ŝx′

)2
+

1− cos 2α

2

(
∆Ŝy′

)2
+

sin 2α

2

(
∆Ŝx′Ŝy′

)
,

where the variance along the direction n⃗ is (∆Ŝn⃗)
2 = ⟨Ŝ2

n⃗⟩ − ⟨Ŝn⃗⟩2 and(
∆Ŝn⃗Ŝm⃗

)
= ⟨Ŝn⃗Ŝm⃗ + Ŝm⃗Ŝn⃗⟩ − 2 ⟨Ŝn⃗⟩ ⟨Ŝm⃗⟩.
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By minimising
(
∆Ŝmin

)2
with respect to α we obtain

2
(
∆Ŝmin

)2
=
(
∆Ŝx′

)2
+
(
∆Ŝy′

)2
+

√((
∆Ŝx′

)2
−
(
∆Ŝy′

)2)2

+
(
∆Ŝx′Ŝy′

)2
,

(2.35)
for

cos 2α = −

(
∆Ŝx′

)2
−
(
∆Ŝy′

)2
√((

∆Ŝx′
)2

−
(
∆Ŝy′

)2)2

+
(
∆Ŝx′Ŝy′

)2
. (2.36)

In eq. (2.36) α is undefined with a phase nπ; ∀n ∈ Z. This is irrelevant, as the
variance only depends on the direction of the resulting vector, which is identical
in all cases. While this result is expressed in the rotated frame, it is simple to
write in the original frame by expanding the variances and co-variances using
eqs. (2.31) and (2.32).

The result implies that as long as we have the expectation values of the
first and second moments of the collective spin in three arbitrary orthogonal
directions, we can find the minimal variance and its direction immediately
at each instance in time. On the other hand, it allows us to predict the
minimal variance direction and require fewer measurements in an experiment.
This minimal variance can be used to calculate the spin squeezing parameter
definitions given in the following subsections.

Definition by Kitagawa and Ueda

The first definition of spin squeezing was given by Kitagawa and Ueda in 1993
with their seminal work "Squeezed spin states" [6]. Borrowing the results of
bosonic squeezed states, they adapted the concept for to two-level atoms in-
stead of photons. With the spin coherent states being well understood and
defined [58, 59], the next step was to define under which conditions squeezing
can happen. Due to the SU(2) algebra, the quadrature of the spin components
to minimise the variance product is not uniquely defined. As we have seen in
section 2.4, we can pick the plane perpendicular to the initial coherent state to
guarantee the Heisenberg’s uncertainty is minimal. Without loss of generality,
we can assume the mean spin direction is preserved and we only need to pay
attention to the initially defined quadrature. In the original paper [6], the au-
thors only looked at the changes in the variances by means of different unitary
transformations that we will see in detail in section 2.6. Still, we can extract
a normalised spin-squeezing parameter from their results by normalising the
minimal variance perpendicular to the mean spin ((∆Ŝmin)

2) as

ξ2S =

(
∆Ŝmin

)2

S/2
=

4
(
∆Ŝmin

)2

N
, (2.37)
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since the spin length for a spin coherent state is given by S = N/2, where
N is the number of spins in the system. It is easy to see that ξ2S = 1 for
a spin coherent state, as in such case (∆Ŝmin)

2 = (∆Ŝ⊥)2 = N/4. As the
coherent states lack quantum correlations, we may expect certain correlated
states to yield ξ2S < 1. In fact, it has been shown that ξ2S is related to negative
correlations [9] and concurrence [64].

Definition by Wineland et al.

Around the same time, Wineland et al. constructed a squeezing parameter
to measure accuracy enhancement in Ramsey spectroscopy [7, 8]. In this
framework the spin coherent states act as a noise reference. This parameter is
derived through the definition of phase sensitivity, rather than the quadrature
approach of bosonic squeezing that ξ2S relies on.

Let us suppose we want to measure a phase ϕ which characterises a rotation
of a given state on a perpendicular axis.Without loss of generality, we assume
the state is originally located along the z direction ( ⟨Ŝx⟩ = ⟨Ŝy⟩ = 0) and we
rotate it by phase ϕ around the x direction such that

Ŝy′ = R̂x(ϕ)ŜyR̂
−1
x (ϕ) = cosϕŜy − sinϕŜz, (2.38)

is the new axis y in the rotated frame. It follows that
〈
Ŝy′
〉
= cosϕ

〈
Ŝy

〉
− sinϕ

〈
Ŝz

〉
= − sinϕ

〈
Ŝz

〉
,

(
∆Ŝy′

)2
= cos2 ϕ

(
∆Ŝy

)2
+ sin2 ϕ

(
∆Ŝz

)2
− 1

2
sin 2ϕ

〈
ŜyŜz + ŜzŜy

〉
.

Then, phase sensitivity can be accounted for through error propagation as

∆ϕ =
∆Ŝy′∣∣∣∂ ⟨Ŝy′⟩ /∂ϕ

∣∣∣
=

∆Ŝy′∣∣∣cosϕ ⟨Ŝz⟩
∣∣∣
. (2.39)

If ϕ is sufficiently small, we can approximate cosϕ ∼ 1 and (∆Ŝy′)
2 ∼ (∆Ŝy)

2.
Then

∆ϕ =
∆Ŝy∣∣∣ ⟨Ŝz⟩

∣∣∣
. (2.40)

We can write this result for the phase sensitivity achievable along the di-
rection of minimal variance as

∆ϕ =
∆Ŝmin

⟨Ŝn⟩
, (2.41)

where ⟨Ŝn⟩ =
√

⟨Ŝx⟩2 + ⟨Ŝy⟩2 + ⟨Ŝz⟩2.
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For instance, for a spin coherent state we obtain

(∆ϕ)SCS =
1√
N
. (2.42)

which is generally referred to as the shot-noise limit or standard quantum limit.
The spin squeezing parameter proposed by Wineland et al. is constructed

as

ξ2R =
(∆ϕ)2

(∆ϕ)2SCS

=
N
(
∆Ŝmin

)2

⟨Ŝn⟩2
. (2.43)

In this framework the spin squeezing parameter is established as a sensitivity
ratio between an arbitrary state and the spin coherent states. If the state is
highly correlated, the sensitivity increases and ξ2R < 1. In such case, the state
provides a phase sensitivity advantage over the shot-noise limit.

Moreover, we can compare it with the previously defined spin squeezing
parameter ξ2S

ξ2R
ξ2S

=

(
N/2

⟨Ŝn⟩

)2

≥ 1, (2.44)

since N/2 = S ≥ ⟨Ŝn⟩, to deduce the spin squeezing parameter proposed by
Wineland et al. is strictly more restrictive.

Lastly, ξ2R has a lower bound due to the uncertainty relation

(
∆Ŝmin

)2 (
∆Ŝ⊥

)2
≥ 1

4
| ⟨Ŝn⟩ |2, (2.45)

which can be written as

ξ2R ≥ N

4
(
∆Ŝ⊥

)2 . (2.46)

We can show the eigenstates with the largest eigenvalue of (∆Ŝ⊥)2 are of the
form [8]

|ψ⊥⟩ =
1√
2

(
|S, S⟩⊥ + eiϕ |S,−S⟩⊥

)
, (2.47)

and yield (∆Ŝ⊥)2 = S2. So in general, (∆Ŝ⊥)2 ≤ S2 = (N/2)2 and we obtain

ξ2R ≥ 1

N
. (2.48)

If we saturate this inequality, we have reached the so-called Heisenberg limit
[27], which is the ideal scenario where the state is maximally squeezed.

Through the rest of this work, we refer to ξ2R as simply the spin squeezing
parameter ξ2.
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Spin squeezing as an entanglement witness

Spin squeezing is attractive to detect entanglement, as it constitutes an exper-
imentally more accessible quantity than other observables like concurrence of
entanglement entropy. In some systems the individual spins are, in fact, not
accessible. This makes spin squeezing a relevant quantity, which also has the
advantage of requiring few measurements.

However, particular definitions of spin squeezing might be able to show
different kinds of entanglement. In other words, spin squeezing definitions can
construct different entanglement criteria. For instance, it has been shown that
ξ2S < 1 implies negative pairwise correlations [9]. This is clear to picture if
we recall that, to generate spin squeezing, we require quantum correlations to
surpass the shot-noise limit offered by the spin coherent states.

As the state becomes more non-separable in this scheme, entanglement is
built up [65], which can be shown by introducing a Lagrange multiplier in
results for ξ2R. This can also be represented in the following spin squeezing
criteria [66]

(∆Ŝmin)
2

⟨Ŝn⟩2 + ⟨Ŝ⊥⟩2
≥ 1

N
, (2.49)

which certifies many-body entanglement as the state becomes non-separable.
It can be found that symmetric states that violate eq. (2.49) are two-qubit
entangled [64], which is not the case in general [67].

This pattern of spin squeezing criteria tailored towards a specific type of
entanglement, but fails to detect entanglement in general, is repeated for cri-
teria for many-body singlet states [68, 69], entangled Dicke states [69] and
three-qubit entanglement [70, 71].

An alternative path to singular criteria that can only separate certain en-
tangled states from others is to accumulate a number of inequalities such that
their combined results give us more information about entanglement of spin
squeezed states [70, 71]. Thus, it is possible to combine several generalised spin
squeezing inequalities for different criteria to determine if a given arbitrary spin
squeezed state of spin-1/2 is entangled [67, 72]:

〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉
+
〈
Ŝ2
z

〉
≤N(N + 2)

4
, (2.50)

(∆Ŝx)
2 + (∆Ŝy)

2 + (∆Ŝz)
2 ≥N

2
, (2.51)

〈
Ŝ2
α

〉
+
〈
Ŝ2
β

〉
− N

2
≤(N − 1)(∆Ŝγ)

2, (2.52)

(N − 1)
[
(∆Ŝα)

2 + (∆Ŝβ)
2
]
≥
〈
Ŝ2
γ

〉
+
N(N − 2)

4
, (2.53)

where α, β, γ take all the possible permutations of x, y, z. While not as compact
as the spin squeezing parameters, this set of simple inequalities is complete in
the sense of unequivocally detecting entanglement when information about
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the state is limited to the first and second moments of the collective spin
components. No other inequality based on these observables will be able to
detect more entangled states. Interestingly, this set of criteria can also detect
separable two-body entanglement despite not including correlations among
multiple parties.

It is possible to map this set of criteria to the case of particles with spin
j > 1/2 [26] through the use of modified second moments of spin components.
These criteria can be recovered from a generalized entanglement witness for
local observables when the local spin components are chosen as the observables
of interest [38]. This witness is constructed on the violation of separability in a
data-driven approach, it provides a more compact, while less explicit, criteria
to study entanglement detection.

It is also possible to use this data-driven perspective to construct Bell
inequalities that detect separability which depend only on first and second
collective moments [37]. They can be adapted to spin squeezed states to de-
tect entanglement in a wider variety of scenarios, since they can include any
number of outcomes and settings in the measurements. We will explore these
advantages in Chapter 8 to detect entanglement for spin-1/2 systems in the
presence of occupancy defects.

2.6 Paradigmatic models

Kitawaga and Ueda [6] took the idea of dynamical generation of squeezed
light and applied it to a system of atoms with total spin S. While they admit
squeezing generation can happen with higher order terms, they defined the
simplest non-linear Hamiltonians which could generate squeezing in a spin
system, One-Axis Twisting (OAT) and Two-Axis Counter Twisting (TACT).
These models are clearly based on the Kerr medium dynamics [73] and squeeze
operator (2.7), found in quantum optics. The success of these models rely on
the conservation of total spin, while forcing the probability distribution to
change non-linearly over the surface of the Bloch sphere. Any linear term
would introduce a rotation of the state, without incurring in deformations of
the probability distribution by itself. Thus, the simplest form of non-linearity
we can introduce are second moment operators. These models allow us to
breach the standard quantum limit, obtaining much higher correlations than
an ensemble of N uncorrelated measurements.

One-Axis Twisting

To obtain the desired squeezing of the probability distribution, we may look for
a unitary transformation over the coherent state that changes relative phases
of the state components but not its mean direction. That way, the centre of the
distribution stays in the same place but correlations can build up entanglement,
and thus squeezing. Since spin coherent states can be expanded in angular
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momentum states, we might look for a unitary operator Û(t) = eiĤt = eitF (Ŝz),
as they are eigenstates of Ŝz. If we work in the Heisenberg picture to see the
evolution of the ladder operators, we obtain

Ŝ+(t) =
(
Ŝ−(t)

)†
= Û(t)Ŝ+(0)Û

†(t) = Ŝ+(0)e
itf(Ŝz), (2.54)

where f(Ŝz) = F (Ŝz + 1)− F (Ŝz). If we plug F (Ŝz) = χŜz, the phase shift is
global and no correlations can build up over time. If instead we pick F (Ŝz) =
χŜ2

z , f(Ŝz) = 2χ(Ŝz + 1/2) so we can obtain phase correlations among the
total angular momentum components of the state.

Thus, we define the one-axis twisting model as

ĤOAT = χŜ2
z . (2.55)

This model is in fact analogous to the dynamics found for coherent light
in an optical Kerr non-linear medium, which is characterised by [73].

Ĥ = κ(â†â)2, (2.56)

where â is the photon annihilation operator.
In order to maximise the correlations, we want our initial spin coherent

state to be perpendicular to the twisted axis [6], for instance along the x
direction.

Equation (2.55) is a convenient Hamiltonian, as expectation values can be
calculated analytically, so the minimum variance (2.35) is well defined in this
case. We can approximate the minimal value of the squeezing parameter (2.43)
generated by eq. (2.55) for N ≫ 1, |2χt| ≪ 1 as [74]

ξ2best,OAT ≃ 32/3

2

1

N2/3
. (2.57)

It is relevant to point out the direction of minimal variance changes over time
and at the optimal time it goes like α ∼ arctan

(
N−1/3

)
/2 [6]. The correspond-

ing best squeezing time is found to be [74]

χtbest,OAT ≃ 31/6
1

N2/3
. (2.58)

A semi-classical approach might help us understand the dynamics of the
one-axis twisting Hamiltonian. One precise method could be the mapping of
operators in Hilbert space to differential operators on the classical phase space.
This representation is widely successful and relies on the over-completeness of
the coherent states as a basis [50, 75]. In our particular case we can rely on
a simpler mean-field approximation, since we want a quick description of the
coherent states trajectories for a given energy functional [76]. This approxima-
tion assumes the coherent state is not distorted during evolution, but should be
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sufficient to understand the dynamics of the probability distribution at short
times. For this mean-field approximation, we replace the creation-annihilation
operators by complex numbers such that

Sx → S sin θ cosϕ, (2.59)
Sy → S sin θ sinϕ, (2.60)
Sz → S cos θ, (2.61)

represent the mean-field spin operators parameterised for conjugate variables
θ, ϕ.

The mean-field Hamiltonian for Ĥ = χŜ2
z would be H = χS2 cos2 θ, so the

corresponding equations of motion are

dϕ

dt
=

1

S

∂H

∂θ
= −χS sin 2θ, (2.62)

dθ

dt
= − 1

S

∂H

∂ϕ
= 0. (2.63)

With θ ∈ (0, π], the energy fluctuations change sign at θ = π/2, so upper
hemisphere coherent states move in one direction while lower half ones move in
the opposite direction. Not only that, but the magnitude of this displacement
varies with the latitude. We can expect the probability distribution to nearly
follow these rules too in a fashion similar to a shear force applied to the initially
coherent state.

This thesis in printed form allows the reader to see an animation of the
one-axis twisting model dynamics by flipping the right corners of the document
pages from end to beginning. The Husimi distribution corresponding to the
best squeezing time from eq. (2.58) is drawn in a different color to easily identify
the time at which spin squeezing is optimized. While later distributions might
look more squeezed, the mean spin length is reduced in time and at some point
the Gaussian character of the state is also lost. However, cat states or a revival
of the initial coherent state can be obtained at later times [77]. The animation
is computed for N = 100 particles and t ≤ 4tbest,OAT.

The one-axis twisting model has been widely studied due to its simplicity
and ubiquity in many systems and scenarios. In fact, its application has been
proposed in many platforms like Bose-Einstein condensates [66, 78], optical
cavities [79], lattice clocks [80, 81], or bulk molecular gases [32, 82].

Twist And Turn

Interestingly, it has been found that the addition of a linear term orthogonal
to the twisting axis in eq. (2.55), aptly named as the twist and turn (TAT)
Hamiltonian

ĤTAT = χŜ2
z +ΩŜx, (2.64)
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Figure 2.2: Evolution of the one-axis twisting model (2.55) with N = 100 par-
ticles for an arbitrary χ. Bloch spheres in Hammer projection show the quasi-
probability Husimi distribution Q(θ, ϕ) = | ⟨θ, ϕ|ψ(t)⟩ |2, for certain points in
time. Grey quiver lines in the Bloch spheres portray the mean-field results from
eqs. (2.62) and (2.63). The lower panel shows the evolution of the squeezing
parameter ξ2.

can provide squeezing acceleration over eq. (2.55) [83, 84]. While the twisting
provides a shear on the probability distribution, the linear term allows a faster
spread of the distribution as it realigns the already squeezed distribution with
the twisting axis. We can again obtain an understanding of the dynamics
under this model at short times through a semi-classical picture.

dϕ

dt
= −χS sin 2θ +Ωcos θ cosϕ, (2.65)

dθ

dt
= Ωsin θ sinϕ. (2.66)

While with one-axis twisting we find instability along the equator, the solutions
on this case gives us an unstable fixed point along the axis of rotation Ŝx. We
can see an example of these dynamics in fig. 2.3.

States that maximise Ramsey spectroscopy sensitivity are eigenstates of
eq. (2.64) [85]. Moreover, control over the linear term can lead to longer co-
herence times of the squeezed states with the simple implementation of an
external field [86]. The twist and turn Hamiltonian can generate more entan-
glement than eq. (2.55) [84], but its detection requires high-order non-linear
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Figure 2.3: Evolution of the twist and turn model (2.64) with N = 100
particles and Ω = Nχ/2 for an arbitrary χ. Bloch spheres in Hammer projec-
tion show the quasi-probability Husimi distribution Q(θ, ϕ) = | ⟨θ, ϕ|ψ(t)⟩ |2,
for certain points in time. Grey quiver lines in the Bloch spheres portray the
mean-field results from eqs. (2.65) and (2.66). The lower panel shows the evo-
lution of the squeezing parameter ξ2.

definitions of the squeezing parameter or measuring quantum Fisher informa-
tion [87].

Two-Axis Counter Twisting (TACT)

While the one-axis twisting model appears in many contexts naturally, it is
unable to reach the lower bound of the spin squeezing parameter ξ2R ∼ N−2/3 >
N−1. There are, potentially, better options to generate squeezing and reach the
Heisenberg limit, rivalling the entanglement of the GHZ states [88]. Moreover,
the optimal squeezing angle changes with time and number of particles, which
can be problematic for direct experimental measurements. We may imagine
that if we compensate the twisting of the probability distribution with an
action at an orthogonal direction, we might find not only a fixed squeezing
angle but even more squeezing.

Similarly to the one-axis twisting model, we can take inspiration from
another result of quantum optics like the squeeze operator (2.7) to obtain the
Hamiltonian

ĤTACT = χ
(
Ŝ2
z − Ŝ2

y

)
. (2.67)
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This is the two-axis counter twisting model (TACT), also simply known as
the two-axis twisting model (TAT). Notice this last naming convention can
be confusing when taking into account the twist and turn model (TAT). The
negative sign in eq. (2.68) is important, as

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z . (2.68)

is conserved unless our Hamiltonian breaks the SU(2) symmetry. Such scenario
is explicitly detrimental for eq. (2.43), as it would inevitably reduce the spin
length ⟨Ŝn⟩. Otherwise, Ŝ2

z + Ŝ2
y = Ŝ2 − Ŝ2

x simply recovers the one-axis
twisting result with a global phase factor.

As with the one-axis twisting model, the choice of twisting axes is arbitrary
as long as they are orthogonal to each other, so it might be more natural to
define it as

ĤTACT = χ
(
Ŝ2
+ − Ŝ2

−
)
, (2.69)

since the evolution of a spin coherent state expanded in the angular momentum
basis |S,m⟩ is more explicit in this form and directly mimics eq. (2.7).

The model can be solved analytically on short times and N ≫ 1, showing
its maximally squeezed state can almost reach the Heisenberg limit sensitivity
[76] as

ξ2best,TACT =
e

2

1

N
, (2.70)

at time
χtbest,TACT =

ln 2N

2N
. (2.71)

To optimise squeezing, the initial spin coherent state has to be orthogonal
to the twisting axes. We can get an intuition about this fact by employing the
mean-field approximation [76] on eq. (2.69). In this caseH = −2iχ sin2 θ sin 2ϕ
and the equations of motion are

dϕ

dt
= −2iSχ sin 2θ sin 2ϕ, (2.72)

dθ

dt
= 4iSχ sin2 θ cos 2ϕ. (2.73)

These derivatives represent a velocity field in the phase space, which we can use
to calculate unstable fixed points where the mean spin will not drift but will
have competing pulls to generate squeezing. The stability of the fixed points
dϕ
dt = dθ

dt = 0 can be extracted from the stability matrix [1]. In this case, we
obtain that the unstable fixed points are located at θ = 0, π,∀ϕ. Our optimal
initial coherent states should be located at the poles of the Bloch sphere.

The energy fluctuations also show us how the squeezing evolves approx-
imately in fig. 2.4, and numerical simulations show the dynamics are faster
than for one-axis twisting.
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Figure 2.4: Evolution of the two-axis counter twisting model (2.68) with
N = 100 particles for an arbitrary χ. Bloch spheres in Hammer projection
show the quasi-probability Husimi distribution Q(θ, ϕ) = | ⟨θ, ϕ|ψ(t)⟩ |2 for
certain points in time. Grey quiver lines in the Bloch spheres portray the
mean-field results from eqs. (2.72) and (2.73). The line width is fixed in this
case to better visualize the direction of the energy fluctuations. The lower
panel shows the evolution of the squeezing parameter ξ2.

Heisenberg limited squeezing is still difficult to reach with two-axis counter
twisting models, due to different decoherence channels in experimental setups
[89]. But it is predicted to generate highly entangled states much more resilient
to decoherence than other proposals if implemented, for instance, using inter-
actions mediated by photon exchange [90]. Very recently, some experiments
claimed to have observed the two-axis counter twisting model through polar
molecules and Floquet engineering [91], and optical cavities [92].
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Chapter 3

Ultra-cold Atoms in the Optical
Lattice

In the past, many experimental platforms have been explored to realise spin
squeezing, as seen in Chapter 1. We choose ultra-cold atoms in the optical
lattice since its a novel platform which describes theoretical models found
in statistical and condensed matter physics [28], with a remarkable level of
control and tunability. In fact, optical lattices are seen as very flexible and
currently one of the best platforms for quantum simulations [29]. This is not
only because of the degree of control and reliability they posses, but for the
sheer variety of models that can be achieved, even at the level of the Hubbard
model [93, 94].

While the wide range of reproducible models can be overwhelming, we focus
on the simplest implementations of the Hubbard model for two component
systems where slight modifications may give rise to effective models that induce
spin squeezing. We hope the exploration contained in this work can serve as a
stepping stone to predict spin squeezing phenomena in more complex models.
In this chapter, we sketch the derivation of our main models of interest in the
optical lattice, the two-component Hubbard model and the Heisenberg model.

3.1 Hubbard model

We may describe the Hamiltonian of a periodic atomic system in second quan-
tisation form as

Ĥ =

∫
drΨ†(r)H(r)Ψ(r)

+
1

2

∫
dr

∫
dr′Ψ†(r)Ψ†(r′)V (r, r′)Ψ†(r)Ψ†(r′),

(3.1)
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where H(r) = ℏ∇2

2m + Vlattice(r) is the single particle Hamiltonian and Ψ(r) =∑
i ϕi(r)ĉi is the field operator written as a sum over the complete set of single

particle quantum numbers with ĉi being the annihilation operator and ϕi(r)
the spatial component of the wave-function of quantum numbers determined
by i. Depending on the particle statistics being a bosonic or fermionic, the op-
erator shall respect commutation or anti-commutation relations, respectively.
Notice the second term in 3.1 accounts for two-body interactions through the
potential V (r, r′).

For now, let us focus on the first part of the right-hand side of eq. (3.1).
The single particle Hamiltonian H(r) describes the movement of a particle in a
periodic potential Vlattice(r) = Vlattice(r+Ri), where the vector Ri character-
izes its periodicity. The solutions of the corresponding Schrodinger equation
along Ri are the so-called Bloch functions [95]

Φ
(n)
q,σ(r) = eiqru

(n)
q,σ(r), (3.2)

for a periodic function
u
(n)
q,σ(r +Ri) = u

(n)
q,σ(r), (3.3)

where q is the quasi-momentum which comes from the translational symmetry
of the potential, σ is a given internal state of the particle and n enumerates
the possible solutions for a given q. These solutions are usually referred to as
bands, since they form a band structure in the first Brillouin zone. Throughout
the text we will refer to the internal states σ as spin components, as we can
reconstruct the SU(2) algebra required for the spin from a superposition of
such internal states. This does not necessarily mean these internal states are
actual spin degrees of freedom, as they can be treated as a pseudo-pin without
any loss of generality in our current framework.

We can apply a discrete Fourier transformation to the Bloch functions to
obtain the Wannier functions

wσ,n(r −Ri) = wi,σ,n(r) =
1√
M

∑

q

e−iq·RiΦ
(n)
q,σ(r). (3.4)

As they are a linear combination of the Bloch functions, they are solutions to
the single particle Hamiltonian H(r).

If the depth of the periodic potential is large enough, the lowest band, n =
0, is well separated from the higher energy bands. In such case, we can expect
the particles to not leave the lowest band at sufficiently low temperatures. It is
then safe to expand the field operator in the Wannier function basis for n = 0,
such that

Ψ(r) =
∑

i,σ

wi(r)ĉi,σ, (3.5)

where we have assumed wi(r) = wi,σ(r); ∀σ and omitted the band structure
index n. This assumption about the isolation of the lowest Bloch band is called
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the tight-binding approximation. The Hamiltonian can then be expressed as

Ĥ =
∑

i,j

∑

σi,σj

ĉ†i,σi
(Hij) ĉj,σj

+
1

2

∑

i,j,k,l

∑

σi,σj ,σk,σl

ĉ†i,σi
ĉ†j,σj

(Vijkl) ĉk,σk
ĉl,σk

,
(3.6)

where

Hij =

∫
drw∗

i (r)H(r)wj(r), (3.7)

Vijkl =

∫
dr

∫
dr′w∗

i (r)w
∗
j (r

′)V (r, r′)wk(r)wl(r
′), (3.8)

are the matrix (tensor) elements that can construct associated operators based
on the values of the integrals.

Wannier functions are highly localized around r − Ri, which allows us
to perform certain approximations. For instance, we may only consider tun-
nelling of the particles among nearest-neighbour sites of the lattice. This is
not the case when the periodic potential is very shallow, as the tight-binding
approximation stops being valid. On the other hand, if two-body interactions
are well described by a contact potential V (r, r′) = gδ(r−r′), the dominating
contribution will be on-site.

If our system is composed of spin-1/2 fermions, the previous approxima-
tions yield the Fermi–Hubbard model

ĤFH = −J
∑

σ=↑,↓

∑

⟨i,j⟩

(
ĉ†i,σ ĉj,σ + h.c.

)
+ U

∑

i

n̂i,↑n̂i,↓, (3.9)

where ⟨i, j⟩ indicates nearest neighbours,
{
ĉ†i,σ, ĉj,σ′

}
= δi,jδσ,σ′ , n̂i,σ = ĉ†i,σ ĉi,σ

and

J =−
∫
drw∗

i (r)H(r)wj(r)

∣∣∣∣
⟨i,j⟩

, (3.10)

U =g

∫
dr|wi(r)|4, (3.11)

for arbitrary i, j if the lattice potential is isotropic. We may also find the
tunnelling coefficient J marked as t in the literature.

Similarly, if our system is composed of bosons with two internal states, we
obtain the two-component Bose–Hubbard model

ĤBH =− J
∑

σ=↑,↓

∑

⟨i,j⟩

(
b̂†i,σ b̂j,σ + h.c.

)
+ U↑↓

∑

i

n̂i,↑n̂i,↓

+
U↑↑
2

∑

i

n̂i,↑ (n̂i,↑ − 1) +
U↓↓
2

∑

i

n̂i,↓ (n̂i,↓ − 1) ,

(3.12)
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where
[
b̂†i,σ, b̂j,σ′

]
= δi,jδσ,σ′ , n̂i,σ = b̂†i,σ b̂i,σ and

Uσ,σ′ =gσ,σ′

∫
dr|wi(r)|4. (3.13)

While sophisticated methods to calculate this coefficients exists [96], ap-
proximating the Wannier functions yields reasonable results on certain lattice
depths. Let us assume the periodic potential of the lattice is sufficiently deep.
The three-dimensional lattice potential obtained from counter-propagating
light beams can be expressed as

Vlattice(r) =
∑

l=x,y,z

V0,l sin
2(kl · r), (3.14)

where V0,l is the potential depth and kl = 2π/λl with λl the potential wave-
length along a given direction. If the potential depth is sufficiently large, each
potential minima can be replaced by a harmonic well. In turn, this allows to
approximate the Wannier functions as Gaussian’s, such that

wi(r) ≈
∏

l=x,y,z

ϕl(r −Ri), (3.15)

where

ϕl(r −Ri) =
e−((r−Ri)·l̂)2/2σ2

l

π1/4
√
σl

, (3.16)

with σl being the harmonic oscillator length along unitary direction l̂.
As the Hubbard models contain only particle creation-annihilation terms

and are particle number conserving, it is natural to describe them in an occu-
pation basis, also referred to as Fock states. This basis makes computations
intuitive, as it simplifies the picture of the system to particles allocated to dif-
ferent lattice sites. The construction of the Fock basis depends on the particle
statistics, as the order in which the creation-annihilation operators act on a
given Fock state is relevant for the sign of the resulting state in the case of
fermions [97].

While we can obtain a rich phase diagram for both two-component Hub-
bard models [98, 99], we focus our attention on the two regimes found for
their single-component counterparts, the superfluid regime (J ≫ U) and the
Mott insulating regime (U ≫ J). We will find relevant models for these two
scenarios in the next sections.

3.2 Two-mode model

If the tunnelling parameter J is much larger than the contact interactions Uσ,σ′ ,
the particles delocalize over the whole lattice such that the occupation per site
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flattens and the system behaves as a condensate. We can assume this is the
case if the condensate fraction fc =

∑
i,j

∑
σ ⟨ĉ†i,σ ĉj,σ⟩ /(NM) approximately

equals one at unit-filling (M = N). Under this scenario we can severely reduce
our Hilbert space if we go to quasi-momentum representation of the operators
via a discrete Fourier transform. That is,

ĉj,σ =
1√
M

∑

q

ei2πjq/M c̃q,σ, (3.17)

where q ∈ [0,M − 1] and c̃†q,σ |nq,σ⟩ =
√
nq,σ + 1 |nq,σ + 1⟩. As the particles

move without friction over the lattice, we may only occupy the states of dif-
ferent spin with q = 0. The states in the q = 0 manifold can be expressed
as

|n,N − n⟩ =

(
c̃†q=0,↑

)n (
c̃†q=0,↓

)N−n

√
n!
√
(N − n)!

|0, 0⟩ , (3.18)

for n ∈ [0, N ].
This approximation fails in the case of fermions due to the Pauli exclusion

principle, forcing higher momentum states to be populated. However, for
bosons we do not have this limitation. By introducing eq. (3.17) in eq. (3.12)
and then setting q = 0 [100], we obtain the following two-mode model

ĤTMM = −2JÑ + ωÑ2 + ϕS̃zÑ + χS̃2
z , (3.19)

where

ω =
U↑↑ + U↓↓ + 4U↑↓

8M
, (3.20)

ϕ =
U↑↑ − U↓↓

2M
, (3.21)

χ =
U↑↑ + U↓↓ − 2U↑↓

2M
, (3.22)

and Ñ = ñq=0,↑+ñq=0,↓ with ñq,σ = b̃†q,σ b̃q,σ, and S̃z = Ŝz/
√
M =

∑
j(b̂

†
j,↑b̂j,↑−

b̂j,↓b̂j,↓)/(2
√
M). As we expect the state to stay in the q = 0 manifold, we may

assume Ñ ≈ N . The term ϕS̃zÑ constitutes a rotation of the state in the Bloch
sphere around the z direction. The last term on the right side of eq. (3.19)
matches the one-axis twisting model from Section 2.6 and is able to generate
spin squeezing by itself.

3.3 Heisenberg model

If we go to the opposite regime where Uσ,σ′ ≫ J , the energy spectrum shows
a separation between the single-occupied states and states with multiple oc-
cupied sites. This happens because the kinetic energy contribution is not
sufficient to compensate for the large on-site contact interactions.
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To derive an effective model under these circumstances at unit-filling (N =
M), we may employ second order perturbation theory. To do so we have to
separate the spectrum according to a perturbation term threshold. In this
case, the spectrum is given by the contact interactions, which are naturally
diagonalized by the Fock occupation basis. The tunnelling term acts naturally
as the perturbation in this regime and allows to couple, at least, single occupied
states with double occupied states. Details on how to perform this calculation
can be found in Chapters 4 and 6. After appropriate derivation, we obtain the
so called XXZ Heisenberg model

ĤXXZ = −J⊥
M∑

i=1

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1

)
. (3.23)

If ∆ = 1, we go from the XXZ to the XXX model, also known as spin exchange
model. In our case, we find that for fermions J⊥ = 4J2/U , ∆ = 1; so we
obtain the XXX model. However, we find that for bosons J⊥ = 4J2/U↑↓,
∆ = U↑↓/U↓↓ + U↑↓/U↑↑ − 1; which allows us to obtain the XXZ model.

If the system is not at unit-filling, tunnelling may happen between single
occupied states directly. This yields the so-called t–J model, which is exactly
like the Heisenberg model with the additional tunnelling term projected onto
the single occupied states only.

The Heisenberg model was first postulated by Werner Heisenberg and Paul
Dirac at the dawn of quantum mechanics, as a way to solve the long standing
problem of ferromagnetism [101, 102]. Some time after this proposal, Hans
Bethe obtained the eigenstates of the model under periodic boundary condi-
tions through a well chosen ansatz [103, 104]. These type of solutions are now
referred to as the coordinate Bethe ansatzs [105], a tool that exceeded its initial
conception as an ad-hoc solution and is employed in some way or another to
obtain the eigenenergies of different Hamiltonians like the Lieb-Lininger model
[106]. The solutions are usually presented as quasi-particles, called magnons
or spin waves depending on the sub-field, that travel through the spin chain
and may interact with each other. We are interested in the eigenenergies and
eigenstates of the Heisenberg model in order to perform perturbation theory
appropriately. In the following subsection, we describe the spin wave solutions
and their derivation in more unusual settings like open boundary conditions.

Magnons in the isotropic Heisenberg model

The reason the Bethe ansatz works in the first place, is because the model is
integrable due to the symmetries it has. For instance, we can see it commutes
with the operator Ŝz, but it also commutes with Ŝ2. Thus, Dicke states are
well defined eigenstates of the model.

The ansatz solutions are usually introduced following the argument that
we can define a vacuum state as |0⟩ = ⊗j |↓j⟩. This state will be an eigenstate
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with the lowest eigenvalue possible, and the ansatz uses it as a reference to
construct the excited eigenstates. The excited eigenstates are then constructed
from local excitations, such that each sector is diagonalised to obtain the full
spectrum.

Let us solve the one and two magnon excitations, so that we can generalise
to any number of them. We may refer to the local excited states from the
vacuum state as

|l⟩ = Ŝ+
l |0⟩ = Ŝ+

l

M⊗

j=1

|↓j⟩ . (3.24)

To solve the single excitation sector, we can rely on the translational sym-
metry of the system, such that we can define a translator operator U |l⟩ =
|l + 1⟩. The eigenstates of this operator are characterised by the eigenvalues
e−i2πq/M , where q ∈ (0,M − 1] is the quasi-momenta of the solution. We can
solve the eigenvalue problem by writing the eigenstates as a superposition of
the locally excited states |l⟩

|q⟩ =
M∑

l

a(l) |l⟩ , (3.25)

and apply the translator operator to find the recursion relation ⟨l + 1|q⟩ =
ei2πq/Ma(l) to obtain

|q⟩ = 1√
M

M∑

l

ei2πql/M |l⟩ . (3.26)

Unsurprisingly, this is equivalent to a discrete Fourier transform of the locally
excited states. These states are also eigenstates of the Heisenberg Hamiltonian,
with eigenvalues

Eq − E0 = J(1− cos(2πq/N)). (3.27)

Notice that when q = 0, the energy is the same as the vacuum state |0⟩, but
the state is a trivial superposition of states with a single spin flipped. It is, in
fact, the Dicke state |S,−(S + 1)⟩. In any case, we refer to the solution (3.26)
as a single magnon excitation, where the magnon is a collective spin excitation
of quasi-momenta q.

While this sector is trivially solved, the sector with two spin flips is more
complicated, as scattering processes among spin excitations have to be taken
into account. For this reason, let us repeat this calculation with the Bethe
ansatz. We want to solve the eigenvalue problem with the state in eq. (3.25),
so we assume this is the case and solve Ĥ |q⟩ = Eq |q⟩ as a system of equations
of the form

2(Eq − E0)a(l) = J (2a(l)− a(l − 1)− a(l + 1)) , (3.28)
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∀j ∈ [1,M ] with a(l +M) = a(l). The Bethe ansatz here is the plane wave
solution a(l) = ei2πq/M ,∀q ∈ (0,M − 1], such that we recover eq. (3.26) after
renormalisation.

The relevance of the ansatz appears when we want to solve the two exci-
tations sector. In such case, the solution will still be a superposition of states
with two spin flipped |l1, l2⟩ as

|q1, q2⟩ =
∑

l1<l2

a(l1, l2) |l1, l2⟩ . (3.29)

The insight of Bethe was that we can see the coefficients as a sum of two plane
wave solutions, one accounts for two magnons travelling freely, and the other
is the scattering process between them.

a(l1, l2) = A(q1, q2)e
i2π(q1l1+q2l2)/M +A′(q1, q2)ei2π(q1l2+q2l1)/M . (3.30)

The ansatz solves the system of equations for the eigenvalue problem obtained
from eq. (3.29) when |l1 − l2| > 1 and the corresponding eigenvalue is

Eq1,q2 − E0 = J

2∑

n=1

(1− cos(2πqn/M)). (3.31)

This makes sense, as it is equivalent to two freely moving magnons. However,
there is a set of M equations corresponding to the scenario |l1 − l2| = 1 which
are unfulfilled unless

A

A′ ≡ eiθ = −e
i2π(q1+q2)/M + 1− 2ei2πq1/M

ei2π(q1+q2)/M + 1− 2ei2πq2/M
. (3.32)

Thus, we can rewrite the ansatz as

a(l1, l2) = ei2π(q1l1+q2l2)/M+θ/2 + ei2π(q1l2+q2l1)/M−θ/2. (3.33)

Applying periodic boundary conditions and translation invariance, we obtain

Mq1 = λ1 +
θ

2π
, (3.34)

Mq2 = λ2 −
θ

2π
, (3.35)

where λ1, λ2 ∈ [0,M − 1] are the so-called Bethe quantum numbers. An
analysis on the eigenvalue solutions gives relevant physical interpretation to
the wave-function and the resulting eigenvalues. However, we continue our
discussion with the generalisation to any number of magnon excitations, as we
are only interested in the form of the solution.

We can again postulate that an eigenstate of the Hamiltonian can have the
form

|{qn}⟩ =
∑

l1<...<ln

a(l1, . . . , ln) |l1, . . . , ln⟩ . (3.36)
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The solution for this case can be found from the two magnon scattering as

a(l1, . . . , ln) =
∑

P∈Sn

exp


i2π

M

n∑

j=1

qPj lj +
i

2

∑

k<j

θPkPj


 , (3.37)

where P indicates all possible permutations of the n magnons. This solution
yields the energy value

E{qn} − E0 = J

n∑

j=1

(1− cos(2πqj/M)). (3.38)

Again, explicit solutions can be found, some analytically but most of them
numerically. We are, however, only interested in the integrable aspect of this
analysis, as well as the possibility to decompose the sectors into different sub-
spaces.

For our purposes of separating the states into subspaces of different energy,
we must collect all of these states and reformulate the different excited states
sectors using operators with quasi-momenta different than zero in all cases. We
accommodate the states generated with one magnon of quasi-momenta q = 0
as a member of the lower subspace. For example, if we have two-magnon states
|q1, q2⟩ where q1 = 0, this is equivalent to a single magnon excitation and we
relegate this state to the single magnon manifold. If in this same example,
q1 = q2 = 0, then there are effectively no magnons, even if the magnetisation
changes by two, and the state is relegated to the lowest energy manifold.

Notice that the states defined for different magnetisation with all magnons
{qn} = 0 are equivalent to the action of a collective ladder operator n times
(with the corresponding normalisation factor) on the vacuum state |0⟩ =
⊗j |↓j⟩ = |S,−S⟩. Thus, we find that the lowest energy manifold is composed
of the states |S,m⟩ ;∀m ∈ [−S, S]. We also refer to these states as Dicke states
[107]. We can argue the Dicke states are eigenstates of the Heisenberg model
without the Bethe ansatz, because of the SU(2) symmetry of the model. Since
[ĤXXX, Ŝ±] = 0, coherent states are also eigenstates of the isotropic Heisen-
berg model.

We can follow this logic to properly collect all the states of similar nature,
independently of their magnetisation, in the different subspaces by construct-
ing them using generators based on n number of magnons of qj ̸= 0∀j ∈ [1, n].

In this framework, we can generate these magnon states |m+ n, {qn}⟩ from
an arbitrary Dicke state |S,m⟩, as long as the required symmetry conditions
are fulfilled. To check this, we define the generator operator

S̃+
{qn} |S,m⟩ = |m+ n, {qn}⟩ , (3.39)

which acts on an arbitrary Dicke state and returns an state excited with a set
of n magnons from the Bethe ansatz in eq. (3.37). We can check that there
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is a limit in the magnetisation where flipping more spins can only lead to the
state vanishing. Naturally, the hermitian operator S̃−

{qn} = (S̃+
{qn})

† will also
be a generator of this subspace, which allow us to see the size of the generated
subspace is restricted in magnetisation by the number of spins flipped. It can
be shown these are eigenstates of Ŝ2, Ŝz with eigenvalues

Ŝ2 |m+ n, {qn}⟩ = (S − n) (S − n+ 1) |m+ n, {qn}⟩ , (3.40)

Ŝz |m+ n, {qn}⟩ = (m+ n) |m+ n, {qn}⟩ , (3.41)

∀ − (S − n) < m < S − n.
We have not only separated the subspaces properly by number of non-

zero magnons present, but we can see these magnon states have restrictions
both in total spin and corresponding magnetisation. This insight is key in the
search of metrologically useful states, as lowering the total spin of the state is
directly detrimental to the measurement precision, since is analogous with the
reduction of spin length or number of particles.

Another important realisation is that these subspaces of different number
of magnons can have similar energies for at least part of their spectrum. For
example, it is clear that for Eq1=M−1 = J(1 − cos(2π(M − 1)/M)) ∼ 2J and
Eq1=1,q2=1 = 2J(1 − cos(2π/M)) ∼ 4J/M , we have Eq1=M−1 > Eq1=1,q2=1 if
M > 2. Since the energy increases with qn, the energy of the two-magnon
states will catch up and surpass the energy of the given single magnon state.

While this degeneracy may seem problematic since we wanted to separate
the different subspaces, states of different number of magnons are orthogonal
to each other and they form isolated orthonormal basis. This follows from the
fact that they are eigenstates of Ŝ2 and Ŝz with different quantum numbers,
and such states must be orthogonal. If our system does not have a term that
couples states of different number of magnons, we can safely ignore this issue
for the application of perturbation theory.

Single magnon solutions under open boundary conditions

In the case of open boundary conditions, the plane wave ansatz is incorrect, as
the translation symmetry is broken at the boundaries. However, the solution
is simple to obtain and can be instructive for similar problems.

We propose the eigenstates for single magnon excitations under open bound-
ary conditions to be

|q⟩ =
M∑

l=1

a(l) |l⟩ , (3.42)

in the same manner as with periodic boundary conditions. However, we do not
solve the eigenvalue problem through a trial solution in a recurrence relation.
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The eigenvalue problem can then be written as




2(E − E0)a(1) = J [a(2)− a(1)] ,

2(E − E0)a(l) = J [a(l − 1)− a(l)) + (a(l + 1)− a(l))] , ∀ 1 < l < M,

2(E − E0)a(M) = J [a(M − 1)− a(M)] ,

(3.43)
Special equations for the boundary terms can be annoying to work with, so
we can employ the fact that the coefficients outside the system are undefined
[108]. In other words, a(0), a(M + 1) are free parameters that we can use to
redefine the equations at the boundaries and recover the same equation for all
sites.

Thus, we can have

2(E − E0)a(l) = J [(a(l − 1)− a(l)) + (a(l + 1)− a(l))] ; , (3.44)

∀l if a(0) ≡ a(1) and a(M + 1) ≡ a(M).
We can solve this equation by writing it as a recurrence relation

a(l − 1)− 2ca(l) + a(l + 1) = 0, (3.45)

where c = 1 + (E − E0)/J .
The natural trial solution is a(l) = rl, so we shift indexes by one and obtain

a(l)− 2ca(l + 1) + a(l + 2) = rl(r2 − 2cr + 1) = 0. (3.46)

This equation has l trivial solutions and r± = c ±
√
c2 − 1. As we have two

characteristic roots, the solution is a linear combination of both, yielding

a(l) = Arl+ +A′rl−. (3.47)

We can further simplify the solution by noticing that r+r− = 1, so that rl− =

r−l
+ . Let us relabel r ≡ r+, for simplicity. Coefficients A,A′ can be found by

applying the boundary constraints and the normalisation condition. From the
boundary constraints we find

r2(M+1) = 1, (3.48)

and we get
a(l) = ArM−1/2

(
rl−(M−1/2) + r−(l−(M−1/2))

)
. (3.49)

From eq. (3.48), it’s clear the solution can be a complex number such that
|r| = 1, so solving the equation with r = eiθ yields

r = eiπq/M ; ∀q ∈ [0,M − 1], (3.50)

with eigenvectors after normalisation

|q⟩ =
√

2

M

M∑

l=1

cos

[
π

M
q

(
l − 1

2

)]
, (3.51)

and eigenvalues
Eq − E0 = J(1− cos(πq/M)). (3.52)
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Single magnon solutions for spin chains with vacancies

This possible scenario is analogous to open boundary conditions, as introducing
a single vacancy in a ring is the same as creating open boundary conditions,
since our Hamiltonian only acts on nearest neighbours. Thus, vacancies in
between partial chains of spins will yield a system of independent magnons
among partial chains.

While the final result is already quite clear, we will proceed to develop a
properly derived solution from the ground up as an exercise for more compli-
cated systems where longer range spin interactions are present.

We will refer to the set of locations of vacancies or holes for a given moment
in time, or realisation if they are fixed in place, as {h}.

We propose the eigenstates for single magnon excitations to be defined as

|ψ⟩ =
∑

l ̸∈{h}
a(l) |l⟩ , (3.53)

where |l⟩ is defined with respect of a given vacuum state with vacancies on
sites {h}.

The eigenvalue problem can then be written as

2(E − E0)a(l) = J
[
δl+1̸∈{h}(a(l − 1)− a(l)) + δl−1̸∈{h}(a(l + 1)− a(l))

]
,

(3.54)
for the N equations where l ̸∈ {h}. To get rid of the Kronecker deltas, the trick
is identical to the one employed with open boundaries: use vacancy coefficients
as free parameters. We can rewrite the set of equations as

2(E − E0)a(l) = J [(a(l − 1)− a(l)) + (a(l + 1)− a(l))] , (3.55)

if and only if {
a(l − 1) = a(l), if l − 1 ∈ {h} ,
a(l + 1) = a(l), if l + 1 ∈ {h} ,

(3.56)

for l ̸∈ {h}. We may be wary of the scenario where only one vacancy appears
between occupied sites, creating the constraint a(l) = a(l+1) = a(l+2) where
the vacancy is located at site l+1. This constraint is artificial, since we argued
that empty sites act as free parameters for the solution, so we can write in that
particular scenario that a(l+1) = a(l)+a(l+2), without any loss of generality.

This equation yields the same recurrence relation as per the open bound-
aries case, so the solution for a partial chain of occupied sites from site lk to
lk + Lk − 1 is

ak(l) =

{√
2
Lk

cos
[

π
Lk
qk(l −

(
lk − 1

2

)]
; ∀l ∈ [lk, lk + Lk − 1],

0; otherwise,
(3.57)

with qk ∈ (0, Ln − 1]. Each solution ak(l) is independent, so we have Lk solu-
tions for each partial chain k. In other words, each partial chain is independent
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and the quasi-momenta of the single magnon solution on each one depends on
its length.
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Chapter 4

Perturbation Theory

The typical textbook introduction to perturbation theory frames it as a tool
to implement corrections of increasing precision to the calculation of a given
eigenenergy of the system of interest [109]. However, perturbation theory also
allow us to reconstruct a complete effective Hamiltonian, including all matrix
elements up to a given order.

Perturbation theory relies on the assumption that we can decompose the
system Hamiltonian Ĥ into a dominating part which can be diagonalised in a
given basis and treat the rest as a small off-diagonal contribution, Ĥ = Ĥ0+V̂ .
If the perturbation is sufficiently small with respect to some energy scale, we
can compute an effective Hamiltonian based on sensible approximations and
project onto a given energy manifold. The resulting effective Hamiltonian will
have the advantage of a reduced Hilbert space and thus simplify the analysis
of the dynamics. In most cases, this effective Hamiltonian will be only an
approximation of the original, but it will portray its main features.

While other methods allow us to obtain an effective Hamiltonian Ĥeff for
many-body systems, like the Feynman-Dyson diagram technique or the self-
energy formalism [110], we will focus on the Schieffer–Wolff transformation as
our tool of trade. Other perturbative expansions might not be as reliable in
their approximations, to the point of even yielding non-Hermitian Hamiltoni-
ans as an output [111]. It is important to remark that the effective Hamiltonian
is only defined up to a unitary rotation of the projected energy manifold. This
means different methods produce different Taylor series of Ĥeff , so the cutoff
greatly affects the similarity between applications of perturbation theory. A
detailed comparison with alternative perturbative methods can be found in
[112].

4.1 Schieffer–Wolff Transformation

This particular application of perturbation theory relies on the use of a unitary
transformation on the exact Hamiltonian to decouple energetically separated

39



4.1. SCHIEFFER–WOLFF CHAPTER 4. PERTURBATION THEORY

state manifolds. The core idea is simple: given a large energy gap ∆E between
the low and high energy manifolds given by Ĥ0, if the perturbation ϵV̂ couples
them but is small enough when compared with ∆E, we can obtain an effective
Hamiltonian by projecting onto the target energy manifold appropriately. We
define it as

Ĥeff = P̂0Û
(
Ĥ0 + ϵV̂

)
Û †P̂0, (4.1)

where P̂0 is the projector operator to the target energy manifold or subspace
P0 and Û is a unitary transformation that preserves P0. By definition, P0

is invariant under Ĥ0, but not under V̂ . Notice we are free to choose which
energy manifold we project to, as the procedure only relies on the energy gap
between manifolds.

The unitary transformation Û is in fact the Schieffer–Wolff transformation.
We can see Û as a direct rotation between subspaces, which can be written as
Û = exp

(
Ŵ
)

where Ŵ is an anti-hermitian operator that acts off-diagonally
between subspaces. This operator is uniquely defined and has the following
properties:

1. exp
(
Ŵ
)
P̂⊥ exp

(
−Ŵ

)
= P̂0,

2. P̂0Ŵ P̂0 = P̂⊥Ŵ P̂⊥ = 0,

3. ∥Ŵ∥ < π/2,

as long as ∥P̂⊥− P̂0∥ < 1. In other words, we can represent the operator Ŵ as

Ŵ =

(
0 Ŵ0,⊥

−Ŵ †
0,⊥ 0

)
, (4.2)

where the sub-indices in the matrix blocks correspond to the subspaces P0,P⊥.
This decomposition makes clear the block-off-diagonal shape of Ŵ and will be
relevant when we try to derive a practical form of the transformation. Likewise,
we can decompose the perturbation in two contributions: a block-diagonal part
V̂d and a block-off-diagonal part V̂od such that

V̂ = V̂d + V̂od. (4.3)

We have defined the functional form of the operators concerning the trans-
formation. Now, we perform an expansion of 4.1 through the Baker-Campbell-
Haussdorf formula [113] to obtain

Ĥeff = P̂0

(
Ĥ0 + ϵV̂ +

[
Ŵ , Ĥ0

]
+
[
Ŵ , ϵV̂

]
+

1

2

[
Ŵ ,
[
Ŵ , Ĥ0

]]
+O(V̂ 3)

)
P̂0

(4.4)
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We can make the effective Hamiltonian block-diagonal to first order if we
choose

[
Ĥ0, Ŵ

]
= ϵV̂ . (4.5)

Since Ŵ is block-off-diagonal, it conveniently implies
[
Ŵ , V̂

]
=
[
Ŵ , V̂od

]
.

On the other hand, 4.5 becomes ill-defined if V̂d ̸= 0. To fix this, we must
extract the block-diagonal contribution so that

[
Ĥ0, Ŵ

]
= ϵV̂od. (4.6)

Then

Ĥeff = P̂0

(
Ĥ0 + ϵV̂d +

1

2

[
Ŵ , ϵV̂od

]
+O(V̂ 3)

)
P̂0. (4.7)

We represent 4.6 in the eigenbasis of Ĥ0 to define Ŵ . Let {|n⟩} be an
orthonormal eigenbasis such that Ĥ0 |n⟩ = En |n⟩ , ∀n. Since Ŵ , V̂od are block-
off-diagonal, we can only solve 4.6 for two eigenvectors of different subspaces,
such that |n⟩ ∈ Pi, |m⟩ ∈ Pj but Pi ̸⊂ Pj . In such case,

EnWnm −WnmEm = ϵV od
nm, (4.8)

where n,m correspond to eigenvectors of different subspaces, which guarantees
En ̸= Em. We can finally define the matrix elements of the generator Ŵ as

Wnm =

{
ϵV od

nm
En−Em

, iif |n⟩ ∈ Pi, |m⟩ ∈ Pj ,Pi ̸⊂ Pj ,

0, else.
(4.9)

The previous expansion of the unitary transformation is then justified if
the generator is infinitesimal, implying |∆E| ≫ |ϵV̂od|. The upper bound of
this constrain can be defined with high accuracy [112], but this loose condition
is sufficient for our purposes.

After projecting on the subspace of interest, we obtain

Ĥeff
nm = Enmδnm + ϵV̂ d

nm +
ϵ2

2

∑

l

(
V od
nl V

od
lm

En − El
+
V od
nl V

od
lm

Em − El

)
+O(V̂ 3), (4.10)

where |n⟩ , |m⟩ ∈ P0, |l⟩ ∈ P⊥. It is important to remember that this projection
is also applied to the eigenbasis, meaning we constrain the Hilbert space to
P0.

While we have derived the Schieffer–Wolff transformation up to second-
order contributions, the transformation can be extended to infinite terms. The
price for such increase in accuracy is the use of a formalism that relies on super-
operators and recursive relations [112]. Said formalism has the advantage of
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skipping the full spectral decomposition of Ĥ0. This will be unnecessary for us
since our goal is to define quadratic Hamiltonians; higher order terms might
only increase the complexity of our results unnecessarily.

42



Chapter 5

Spin Squeezing through Dipolar
Interactions in the Superfluid
Phase

Until now, we had overview on the phenomena of spin squeezing, ultra-cold
atoms in the optical lattice as our physical platform of interest and perturba-
tion theory as a tool to derive effective models. From this chapter until the end
of this work, we introduce brand new results from our research about the topic
of spin squeezing. In this chapter, we present a proposal for its implementation
with ultra-cold atoms in the lattice using dipole interactions; published as:

M. Dziurawiec, T. Hernández Yanes, M. Płodzień, M. Gajda, M. Lewen-
stein, and E. Witkowska, “Accelerating Many-Body Entanglement Generation
by Dipolar Interactions in the Bose-Hubbard Model”, Physical Review A 107,
013311 (2023).

A first good guess in our quest to obtain experimentally feasible spin
squeezed states through dynamical protocols could be to look for systems that
explicitly resemble the characteristics of the OAT and TACT models. In them
we can see how the unitary evolution operator Û(t) = e−iĤt generates all-to-all
correlations by virtue of the second moments of the collective spin operators.
It is then reasonable to suspect long-range interactions might play a similar
role in the generation of entanglement, as they create pairwise correlations
among all particles in the system.

For instance, the dipolar interaction can be a good candidate for the re-
quired correlation generation. Dipolar interaction decays with a power law
∝ r−3 where r is the distance between them. Even so, such interactions might
add up in time to generate highly entangled states. In fact, lattice models
using dipolar interactions with spin dynamics as the only degree of freedom
can show spin squeezing [60, 114].

Nevertheless, the self-imposed constraints of dimensionality and derivation
from the Hubbard model brought us to a different hypothesis: dipolar interac-

43

https://doi.org/10.1103/PhysRevA.107.013311
https://doi.org/10.1103/PhysRevA.107.013311


5.1. QUANTIZATION CHAPTER 5. DIPOLAR INTERACTIONS

tions might add up to all-to-all correlations if particles travel without friction
across the lattice. Under this assumption we derived the dipolar interactions
for two-component bosons in second quantization form and studied the effec-
tive model in the superfluid phase of the Bose Hubbard Model (J ≫ U).

Calculation of the dipolar interactions in the lattice is difficult to perform
precisely, as in this case second quantisation formalism yields a complicated
integral. But if we assume that Wannier functions heavily localise the inte-
grand, we can take the rest as constant and integration becomes trivial. This
naive approximation was already shown in [28] for the single component Bose
Hubbard model, but we extended it to the case of two-components with po-
larisation direction of the dipoles along the quantisation axis of the spins in
the lattice.

In the superfluid phase, when the condensate fraction is close to unity,
the dynamics are dominated by the operators of quasi-momenta q = 0 in the
Fourier representation. This allows us to represent the effective model as a
two-mode system, since only the q = 0 momenta will be occupied.

If we write the model in this fashion and skip the constant terms, we arrive
at

Ĥeff = χ
(
S̃2
z − ηS̃2

x

)
, (5.1)

where the tilde stands for the q = 0 component of a given operator discrete
Fourier transform, χ = (U↑↑ + U↓↓ − 2U↑↓)/2M , and η ≈ 3γ2ζ(3)/χ. The
first term in the effective model comes purely from the Bose–Hubbard model,
as described in Section 3.2, while the second term comes from the dipolar
interactions. As we will see, η weakly depends on the boundary conditions of
the system, but it will converge when M → ∞.

This means we have two main tunable parameters, the anisotropy in the
two-component contact interactions (U↑↑ +U↓↓ ̸= 2U↑↓) and the dipolar inter-
actions. We can use these not only to generate optimal squeezing but also to
study the continuous transition between the OAT and TACT models.

Remarkably, we have found that anisotropic TACT (0 < η < 1) yields
identical scaling of the spin-squeezing parameter to pure TACT (η = 1) unless
η ≪ 1 by orders of magnitude, where we recover the OAT model. The only
discrepancy is a slight time re-scaling of the squeezing process.

To understand these results, it is important to explain with some detail
the calculations we performed to arrive at them.

5.1 Dipolar interactions for arbitrary geometry in
second quantisation form

In this section, we derive the dipolar interactions in second quantisation form
to express said interactions at the same level as the Hubbard model, derived
in section 3.1. We follow similar approximations to [93, 115], but extend the
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results to two-component bosons and the spin operator. To fully understand
the derivation, it is helpful to describe the dipole moment in second quan-
tisation form as well, since its construction as a form factor provides direct
insight in how to express it in terms of spin operators. We adopt the notation
of chapter 3 to express this formalism. For instance, we define ĉi,σi as the
annihilation operator associated with the Wannier function wi(r) under the
tight-binding approximation in the optical lattice. We also adopt the tensor
notation for the two-body interactions introduced in eqs. (3.6) and (3.8).

Definition of dipole moment in second quantisation form

For pedagogical reasons, let us imagine the magnetic dipole moment is part of
the single particle Hamiltonian such that Hd(r) = f(r)µα(r), with α being a
given projection direction in coordinate space. Once this concept is established
for a single particle properly, we will study the dipolar interaction.

We can express the magnetic dipole moment as proportional to the spin
length on a given projection as

µα(r) = −γ ⟨Ŝα(r)⟩ . (5.2)

As we are working in the lattice, we can define the state measuring eq. (5.2)
as a combination of all Wannier functions in the system. It becomes useful to
express eq. (5.2) in terms of the matrix elements among the Wannier functions.
We can define the spin operators which describe the interaction of two Wannier
functions w∗

i (r), wk(r) as

Ŝx
ik =

1

2

(
Ŝ+
ik + Ŝ−

ik

)
, (5.3)

Ŝy
ik =

1

2i

(
Ŝ+
ik − Ŝ−

ik

)
, (5.4)

Ŝz
ik =

1

2

(
ĉ†i,↑ĉk,↑ + ĉ†i,↓ĉk,↓

)
, (5.5)

where Ŝ+
ik = ĉ†i,↑ĉk,↓, Ŝ

−
ik = ĉ†i,↓ĉk,↑. In general, we would not require such a

definition of the spin operators in light of the high localisation of the Wannier
functions in the lattice. But since we have separated the spatial wave-function
from the corresponding operator, we must continue the analysis before inte-
gration with this concept in mind. In practice, one may see this kind of term
as a scattering at the spin level.

It follows that the dipole moment projection acts as a tensor that recon-
structs the corresponding spin operator when summed over with all the pairs
of creation-annihilation operators required. In other words,

∑

σi,σj

ĉ†i,σi
µα(r)ĉj,σj = −γŜα

ij . (5.6)
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If we apply this concept to the calculation of the single particle Hamiltonian
given by Hd(r) we obtain

Ĥd = −γ
∑

i,j

fijŜ
α
ij , (5.7)

where fij =
∫
drω∗

i (r)f(r)ωj(r). For instance, if f(r) = 1, the orthogonality
of the Wannier functions trivially yields the result Ĥd = −γ∑i Ŝ

α
i = −γŜα

with Ŝα
i = Ŝα

ii being the on-site spin operator of spatial projection α and Ŝα

the corresponding collective spin operator.

Dipolar interactions in second quantisation form

If we express the dipole moment as a vector of orthogonal projections µ(r) =
(µx(r), µy(r), µz(r)), we can express the interaction between two dipoles as

Vdd(r, r
′) = γ2

µ(r) · µ(r′)
|r − r′|3

− 3γ2
µ(r) · (r − r′)µ(r′) · (r − r′)

|r − r′|5
. (5.8)

In view of the derivation for a single dipole, we must take into account the
spin degrees of freedom to calculate the dipolar interactions. If we include the
corresponding creation-annihilation operators and sum over the spin degrees
of freedom we get

V̂dd(r, r
′) =

∑

σi,σj ,σk,σl

ĉ†i,σi
ĉ†j,σj

Vdd(r, r
′)ĉk,σk

ĉl,σl
(5.9)

=γ2
Sik · Sjl

|r − r′|3
− 3γ2

Sik · (r − r′)Sjl · (r − r′)

|r − r′|5
(5.10)

where Sik = (Ŝx
ik, Ŝ

y
ik, Ŝ

z
ik) is a vector of orthogonal projections.

At this point is relevant to separate the integral calculation in two cases,
when the dipoles are in the same lattice site (|r − r′| < d) and when not
(|r − r′| ≳ d). In the former case the influence of the lattice is the same
for both dipoles and calculations are to be done in momentum space. The
result is simply a contribution to the contact interaction terms [28]. In the
latter case the depth of the lattice potential strongly localises the dipoles and
certain approximations can be taken. The Wannier functions are very well
localised around the lattice sites and make other arguments in the integral
almost constant. Then, we can assume the Wannier functions act as a delta
function for other arguments in the integral so that
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V̂dd,ijkl

∣∣∣
i ̸=j

=

∫
dr

∫
dr′w∗

i (r)w
∗
j (r

′)
[
V̂dd(r, r

′)
]
|r−r′|≳d

wk(r)wl(r
′)

≈V̂dd(Ri,Rj)

∫
drw∗

i (r)wk(r)

∫
dr′w∗

j (r
′)wl(r

′)

≈V̂dd(Ri,Rj)δ(Ri −Rk)δ(Rj −Rl).

We now have all the ingredient to obtain the dipolar interactions in second
quantization form in accordance with eq. (3.6). If we change labels and express
the vector Rj −Rk in spherical coordinates |Rj −Rk| , θjk, ϕjk we obtain

V̂dd =
1

2

∑

i,j,k,l

V̂dd,ijkl

∣∣∣
i ̸=j

=
1

2

∑

j,k ̸=j

γ2

|Rj −Rk|3

(
(
1− 3 cos2 θjk

)
Ŝz
j Ŝ

z
k

− 1− 3 cos2 θjk
4

(
Ŝ+
j Ŝ

−
k + Ŝ−

j Ŝ
+
k

)

− 3 sin 2θjke
−iϕjk

4

(
Ŝ+
j Ŝ

z
k + Ŝz

j Ŝ
+
k

)

− 3 sin 2θjke
iϕjk

4

(
Ŝ−
j Ŝ

z
k + Ŝz

j Ŝ
−
k

)

− 3

4
sin2 θjk

(
e−i2ϕjk Ŝ+

j Ŝ
+
k + ei2ϕjk Ŝ−

j Ŝ
−
k

))
,

(5.11)

where Ŝ±
j = Ŝx

j ± iŜy
j .

For simplicity we will focus on particles in a line, where θjk = π
2 ∀j, k;

ϕjk = 0 ∀k > j; ϕjk = π ∀k < j and |Rj −Rk| = d |j − k| so that

V̂dd =
1

2

∑

j,k ̸=j

γ2

d3 |j − k|3
(
Ŝz
j Ŝ

z
k − 2Ŝx

j Ŝ
x
k + Ŝy

j Ŝ
y
k

)
. (5.12)

For simplicity we either assume d is absorbed into γ or d = 1.

5.2 Effective model under Periodic and Open
Boundary Conditions

Periodic Boundary Conditions

To assume periodic boundary conditions means that, if we sit in a particular
lattice site j, we interact with the k site in the same manner as with sites
k±M ; where M is the periodicity of the lattice. The difference between these
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cases is that one of them will be spatially closer than the others to site j and
since the dipolar interaction inversely depends on the cube of the distance
d = |j − k| ≥ 1, we only consider the contribution from the closest site of the
three. Such minimal distance can be expressed as

dmin(j, k) = min(|j − (k −M)| , |j − k| , |j − (k +M)|).
It can be found that

dmin(j, k) =

{
|j − k| ; |j − k| ≤ ⌊M2 ⌋,
M − |j − k| ; |j − k| > ⌊M2 ⌋.

(5.13)

Then the dipolar interactions under periodic boundary conditions will look
like

V̂dd =
1

2

M∑

j

M∑

k ̸=j

γ2

d3min(j, k)

(
Ŝz
j Ŝ

z
k − 2Ŝx

j Ŝ
x
k + Ŝy

j Ŝ
y
k

)
, (5.14)

If we go to the momentum representation with the transformation

S̃α
q =

1√
M

∑

q

ei2πqj/M Ŝα
j , (5.15)

and assume that we are in the superfluid phase (J ≫ U), we can consider the
system to be at q = 0 only. From eq. (5.15) we have Ŝα =

√
MS̃α ≡

√
MS̃α

q=0.
The q = 0 approximation implies Ŝα

j = S̃α/
√
M ;∀j ∈ [1,M ], which simplifies

calculations as now the dipolar interactions look like

V̂dd =
γ2

2M




M,M∑

j,k ̸=j

1

d3min(j, k)



(
S̃2 − 3S̃2

x

)
, (5.16)

where S̃2 = S̃2
x + S̃2

y + S̃2
z , allowing us to focus on the calculation of the sum.

This can be expressed in terms of the collective operators in coordinate space
as

V̂dd =
γ2

2M2




M,M∑

j,k ̸=j

1

d3min(j, k)



(
Ŝ2 − 3Ŝ2

x

)
. (5.17)

However, we will maintain the two-mode notation S̃α, as is more explicit for
the superfluid regime and the two-mode model is numerically more advanta-
geous than its coordinate space counterpart. We can proceed with a change
of variable d = j − k to rewrite this sum.

M,M∑

j,k ̸=j

1

d3min(j, k)
=

M∑

j

j−M∑

d=j−1
d̸=0

1

min(|d| ,M − |d|)3 (5.18)
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After a change of variables d = j − k and making use of 5.13, we obtain

M,M∑

j,k ̸=j

1

d3min(j, k)
= 2M

⌊M
2
⌋∑

d=1

1

d3
− 2

(⌊
M

2

⌋
+ 1−

⌈
M

2

⌉)
1

⌊M2 ⌋2
. (5.19)

If M is odd (⌈M2 ⌉ = ⌊M2 ⌋ + 1) the last term vanishes, but if M is even
(⌈M2 ⌉ = ⌊M2 ⌋ = M

2 ) the last term survives. However, it’s still half the last
term of the sum so we can safely ignore this discrepancy between even and
odd cases.

The result is a very fast converging sum which at the large M limit recovers
the Riemann zeta function evaluated at s = 3, also called Apéry’s constant,
ζ(3) =

∑∞
n=1

1
n3 .

With this result, we finally obtain

V̂dd ≃ γ2ζ(3)
(
S̃2 − 3S̃2

x

)
. (5.20)

In the periodic boundary conditions case, η = 3γ2ζ(3)/χ.
The final effective Hamiltonian, ignoring constant terms is

Ĥ
(PBC)
eff = χ

(
S̃2
z − ηS̃2

x

)
, (5.21)

Open boundary conditions

The effective model under open boundary conditions looks exactly like eq. (5.21).
However, the Hamiltonian written in momentum representation in the super-
fluid phase will be incorrect if we repeat the previous zero momentum ap-
proximation, since boundary conditions matter. However, numerical evidence
shows we can still apply said approximation if we re-normalize with respect to
the condensate fraction, as contributions from q ̸= 0 terms seem to be negli-
gible. This is possible because the condensate fraction in the open boundary
conditions case, while non-unitary, remains largely constant. Then,

Ŝα
j ≈ 1

fc
√
M
S̃α, (5.22)

which can also be expressed as

S̃α ≈ fc√
M
Ŝα. (5.23)

With this correction in mind, we obtain

V̂dd ≃ γ2

2Mf2c




M,M∑

j,k ̸=j

1

|j − k|3



(
S̃2 − 3S̃2

x

)
. (5.24)
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We can solve the double sum factor in the same manner as the previous
case of periodic boundary conditions, obtaining

M,M∑

j,k ̸=j

1

|j − k|3
= 2M

M−1∑

d=1

1

d3
− 2

M−1∑

d=1

1

d2
. (5.25)

Both sums in the right hand side converge to the Riemann zeta function
at different values of s. The final result can then be approximated to

V̂dd ≃ γ2

f2c

(
ζ(3)− ζ(2)

M

)(
S̃2 − 3S̃2

x

)
. (5.26)

In the open boundary conditions case, if we take 1/f2c as a prefactor, we obtain
η = 3γ2(ζ(3)− ζ(2)/M)/χ. In the limit M → ∞, the result converges to that
of the periodic boundary conditions case since ζ(2) is a constant.

As such, the effective Hamiltonian becomes

Ĥ
(OBC)
eff =

χ

f2c

(
S̃2
z − ηS̃2

x

)
. (5.27)

We compare the obtained effective models with exact numerical calcula-
tions of the extended Bose–Hubbard model including the dipolar interactions of
eq. (5.12) in fig. 5.1. The condensate fraction remains mostly constant through-
out the dynamics, which allows us to apply the zero-momentum approximation
safely. This approximation works well even under open boundary conditions
if the re-normalization over fc is applied. Without the re-normalization, the
effective model would show a slower squeezing process than the periodic bound-
ary conditions counterpart since η(OBC) < η(PBC), which is not the case.

5.3 Limitations of the model

Nevertheless, this setup has a number of issues. For instance, we assume the
the geometry of the system under periodic boundary conditions is a line, not
a ring. The ring geometry is feasible, but it would complicate the calculation
of the dipolar interactions contribution to the effective model. The interaction
can be forced to act as if in a line by applying a strong confinement trap, but
this may affect the experimental feasibility. Moreover, the dipolar interactions
we calculated require a strong localization approximation and might yield dif-
ferent results under careful scrutiny. In a realistic setting, particles experience
some friction when tunnelling in the superfluid phase and we might see single,
double or even triple particle losses due to collisions. This is detrimental for
squeezing [63].

These disadvantages motivates us to find scalable spin squeezing in other
experimentally feasible settings. For instance in the Mott insulating phase,
where particle losses due to collisions are far less likely. The cost for such
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Figure 5.1: Comparison of the spin-squeezing parameter ξ2 (left) and con-
densate fraction fc (right) dynamics between periodic and open boundary
conditions for the Hubbard model with dipolar interactions in the Superfluid
regime. M = N = 8, J = 100Erecoil, U = (1, 1, 0.05)Erecoil, γ = 5.13Erecoil.
Thus, χ = 0.16Erecoil and η(PBC) = 1, η(OBC) = 0.83.

schemes is that the recovery of OAT and TACT models require more sophis-
ticated techniques due to the absence of the zero-momentum approximation.
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The spin-squeezing protocols allow the dynamical generation of massively correlated quantum many-body
states, which can be utilized in entanglement-enhanced metrology and technologies. We study a quantum simu-
lator generating twisting dynamics realized in a two-component Bose-Hubbard model with dipolar interactions.
We show that the interplay of contact and long-range dipolar interactions between atoms in the superfluid phase
activates the anisotropic two-axis countertwisting mechanism, accelerating the spin-squeezing dynamics and
allowing the Heisenberg-limited accuracy in spectroscopic measurements.

DOI: 10.1103/PhysRevA.107.013311

I. INTRODUCTION

The second quantum revolution’s main objective lies in
multipartite entangled states: their production, storage, certifi-
cation, and application. Such states, i.e., many-body entangled
and many-body Bell correlated states, are essential resources
for quantum-based technologies and quantum-enhancement
metrology [1–6]. As such, a general protocol allowing the
controlled generation of such states is an extensive research
direction in modern quantum science. Spin squeezing rep-
resents such a protocol paving the way for high-precision
measurements, allowing overcoming the shot-noise limit
[7,8], generating many-body entangled [9–13], and many-
body Bell correlated states [14–20]. The spin squeezing
applies to a system of N quantum particles in two internal
states corresponding to a spin-1/2 degree of freedom and fur-
ther described by the collective spin of the quantum number
S = N/2. The uncertainty of spectroscopic measurements is
ξ/

√
N , where

ξ 2 = N�2Ŝ⊥min

〈S〉2
, (1)

is the spin-squeezing parameter and �2Ŝ⊥min is the minimal
variance in the plane perpendicular to the total spin vector.
The spin squeezing is a witness of entanglement depth, i.e.,
the quantum state is not k producible when ξ < 1/k [21–24].

The paradigmatic theoretical models realizing spin squeez-
ing through unitary evolution are given by the so-called one-
axis twisting (OAT), and two-axis countertwisting (TACT)
Hamiltonians [7]. The OAT Hamiltonian has the form of the
nonlinear operator, often cast as

ĤOAT = h̄χ Ŝ2
z , (2)

where z is the twisting axis and χ−1 is the timescale on
which spin-squeezing parameter has the lowest value ξ 2

best.

The lowest value of the squeezing parameter scales with parti-
cle numbers and for OAT it is ξbest ∝ N−1/3 at χtbest � N−2/3

[7]. The TACT Hamiltonian reads

ĤTACT = h̄χ
(
Ŝ2

z − Ŝ2
x

)
, (3)

where the clockwise and counterclockwise twisting take
places around two orthogonal axes z and x. The advantage
of the TACT is that it gives the Heisenberg limited level of
the best squeezing, namely, ξbest ∝ N−1/2. In addition, the
timescale of the best squeezing is accelerated with respect to
OAT and it is given by χtbest ∼ N−1ln(2N ) [25].

Realizing the quantum simulators of OAT or TACT dy-
namics is essential for quantum enhancement metrology.
Ultracold atoms form a perfect platform for quantum sim-
ulators mimicking such twisting dynamics. OAT has been
realized with Bose-Einstein condensates utilizing atom-atom
collisions [21,26–30] and atom-light interactions [31,32].
Other research directions are ultracold platforms simulating
the Hubbard and Heisenberg models, which generate twisting
dynamics. In the case of bosons, twisting dynamics is induced
by atom-atom collisions [33–36], while for spinful fermions a
synthetic spin-orbit coupling is necessary [34,36–40]. Finally,
twisting dynamics can be activated with long-range interact-
ing bosons, which provides a platform for spin-squeezing
simulators by casting the original Hamiltonian onto the long-
range interacting spin chain [41–47].

In this work, we propose a quantum simulator for the TACT
model realized in a one-dimensional two-component Bose-
Hubbard model in the superfluid phase, considering both
contact and dipolar interactions. With the help of full many-
body dynamics and an effective two-mode model (TMM)
description, we show that the realized squeezing dynamics
capture properties of the anisotropic TACT model where the
clockwise and counterclockwise twisting take place with dif-
ferent rates. Next, we show that scaling with the system size
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of the best squeezing parameter and best squeezing time is
equivalent to the scaling obtained for the TACT model. Our
results show the significant acceleration of the spin-squeezing
dynamics by dipolar interactions, which is an essential effect
from the experimental point of view

The paper is organized as follows. In Sec. II we introduce
the considered model. Starting with a general many-body
description of the system we provide an effective two-mode
model accounting for both contact and long-range dipolar
interactions. Next, in Sec. III, we perform an analysis of
the mean-field phase space of the anisotropic TACT model.
In Sec. IV, with the help of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations [48,49],
we analyze the scaling of the best squeezing and the
best squeezing time with the system size. We describe a
proposition of an experimental realization of our model in
Appendix A and we conclude in Sec. V.

II. EXACT AND EFFECTIVE MODELS

We consider N bosonic atoms in the two internal states
|↑〉, |↓〉 which corresponds to the ensemble of N spin-1/2
particles (qubits). The atoms are described by the following
Hamiltonian:

Ĥ = Ĥ0 + Ĥd , (4)

Ĥ0 =
∫

d3r�̂†(r)

(
− h̄2∇2

2m
+ Vlatt

)
�̂(r), (5)

Ĥd =
∫

d3r1

∫
d3r2�̂

†(r1)�̂†(r2)V12�̂(r2)�̂(r1), (6)

where the vector of the bosonic field operators is �̂T (r) =
[�̂↑(r), �̂↓(r)] with �̂σ (r) describing an atom at the position
r in the state σ =↑,↓. The interaction potential V12 is a sum of
two terms, V12 = Vc + Vd , the short-range contact interaction

Vc = 4π h̄2as

m
δ(r1 − r2), (7)

where m is the atomic mass and as is the s-wave scattering
length. The long-range dipolar interaction

Vd = μ0

4π

(
μ1μ2

|r1 − r2|3 − 3[μ1(r1 − r2)][μ2(r1 − r2)]

|r1 − r2|5
)

, (8)

where μ0 is the magnetic constant and μ1,2 is the dipole
moment associated with the spin operators μ1,2 = −γ h̄s1,2,
where s = 1

2 (σx, σy, σz ), γ = gμB/h̄ is the gyromagnetic ra-
tio, g is the g factor, and μB is the Bohr magneton.

The atoms are loaded into a three-dimensional optical lat-
tice, which is assumed to have strong transverse confinement
while tunneling is allowed in one dimension only. Effectively,
the optical lattice potential leads to Vlatt = V0 sin2 kx, where
k = 2π/λlattd is a wave vector associated with the lattice
wavelength λlatt = 2d , where d is a lattice constant. We con-
sider the unit filling, so the number of lattice sites M equals
the total number of atoms N (M = N), and periodic boundary
conditions. We assume the atoms occupy the lowest Bloch
band. In the tight-binding approximation, the field operator
is conveniently expanded in the basis of the Wannier func-
tions, and the Hamiltonian of the system (4) reduces to the

two-component Bose-Hubbard model (BHM) extended by the
dipolar term, namely,

Ĥ = ĤBH + Ĥd ≡ ĤdBH. (9)

The two-component Bose-Hubbard Hamiltonian ĤBH reads

ĤBH = − J
∑

σ=↑,↓

∑
j

(â†
σ, j âσ, j+1 + â†

σ, j âσ, j−1) +
∑

j

×
(

U↑↑
2

n̂ j↑(n̂ j↑−1)+U↓↓
2

n̂ j↓(n̂ j↓−1)+U↑↓n̂ j↑n̂ j↓

)
,

(10)

where âσ, j and n̂σ, j are the on-site annihilation and number
operators of atoms in the state |σ 〉 at the site j. The hopping
amplitude J , set as the energy unit, does not depend on the
spin state σ , while the interaction coefficients Uσσ ′ contain
the contributions of both the on-site contact and the on-site
dipolar interaction [50]. The dipolar interaction term Ĥd reads

Ĥd =
∑
j,k �= j

Wjk (Ŝz, j Ŝz,k − 2Ŝx, j Ŝx,k + Ŝy, j Ŝy,k ), (11)

where Wjk = W0/| j − k|3, W0 = γ 2h̄2μ0/4πd3 is a dipole-
dipole coupling constant. The on-site spin operators are
Ŝ+

j = â†
↑, j â↓, j , Ŝ−

j = â†
↓, j â↑, j , Ŝ±

j = Ŝx, j ± iŜy, j , and Ŝz, j =
(n̂ j,↑ − n̂ j,↓)/2, while the collective spin operators read Ŝx =
1
2

∑
j Ŝx, j , Ŝy = 1

2i

∑
j Ŝy, j , and Ŝz = 1

2

∑
j Ŝz, j . The range

of the dipole potential extends over several lattice sites
under typical experimental conditions. Therefore, it is ap-
proximately constant on scales comparable to the spatial
localization of Wannier functions. Under this condition, the
dipolar part of the Hamiltonian can be simplified in the form
(11), see Appendix B for a derivation.

We consider the dynamical generation of spin-squeezed
states from an initial spin coherent state when the system
is in the superfluid phase Uσσ � J and contact interactions
compete with the long-range one. This regime corresponds
to the situation when the wave functions of atoms are de-
localized over the entire lattice and the condensate fraction
fc ≡ 1

N2

∑
i, j

∑
σ=↑,↓〈â†

σ,iâσ, j〉 approximately equals 1. The
implementation of the Hamiltonian Ĥ under these conditions
by using chromium-52 atoms is discussed in Appendix A for
parameters as in the recent experiment [51].

The two-component Bose-Hubbard model can simulate the
OAT dynamics via contact interactions among bosons in the
superfluid phase [35]. Here we show that the system can simu-
late the anisotropic TACT dynamics when dipolar interactions
between the bosonic atoms are taken into account. To under-
stand why the twisting mechanism is simulated by the system
Hamiltonian (9) we perform the following analysis. First,
we consider ĤdBH in the quasimomentum representation by
using the Fourier transforms âσ, j = 1√

N

∑
n ei 2π

N jnâσ,qn , which
leads to the following transformation for spin operators:
Ŝσ, j = 1√

N

∑
n ei 2π

N jnŜσ,qn , where the quasimomentum reads

qn = 2π
N n for n = 0, 1, 2, . . . , N − 1 [52]. Next, by keeping

the zero-momentum mode qn = 0 contributions only, one can
show that ĤdBH reduces to the effective model that is a sum of
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two terms

ĤdBH,qn=0 = ĤBH,qn=0 + Ĥd,qn=0. (12)

The first term, ĤBH,qn=0, comes from the zero quasimomen-
tum mode of the Bose-Hubbard Hamiltonian

ĤBH,qn=0 = − 2JN̂qn=0 + �NN N̂2
qn=0

+ �SN Ŝz,qn=0N̂qn=0 + �SSŜ2
z,qn=0, (13)

where

�NN = U↑↑ + U↓↓ + 4U↑↓
8N

, (14)

�SN = U↑↑ − U↓↓
2N

, (15)

�SS = U↑↑ + U↓↓ − 2U↑↓
2N

, (16)

and realizes OAT dynamics [35]. The second term, Ĥd,qn=0,
consists of the zero-momentum component of the dipolar
interactions

Ĥd,qn=0 = 2h(3)
�N/2�

W0

N

(
Ŝ2

qn=0 − 3Ŝ2
x,qn=0

)
, (17)

with h(3)
�N/2� = ∑�N/2�

l=1 1/l3 ≈ 1.2 for N > 5 and Ŝ2
q = Ŝ2

x,q +
Ŝ2

y,q + Ŝ2
z,q, see Appendix B for details. Finally, by collecting

the particular terms in (12) we obtain

Ĥ dBH,qn=0 = U − U↑↓
N

Ŝ2
z,qn=0 − 6h(3)

�N/2�
W0

N
Ŝ2

x,qn=0, (18)

where we neglect the constant energy terms assuming N̂qn=0 =
N and U↑↑ = U↓↓ = U . Note here that the zero quasimo-
mentum component of the spin operators corresponds to
the collective spin operators in the position representation,
namely, Ŝβ,qn=0 = 1√

N

∑
j Ŝβ, j with β = x, y, z. As such, we

will refer to Ŝβ,qn=0 as the operators Ŝβ . Taking this into
account, we identify the effective two-mode model (TMM)

ĤTMM = h̄χ
(
Ŝ2

z − ηŜ2
x

)
, (19)

which is the anisotropic TACT with

h̄χ = U − U↑↓
N

, (20)

h̄χη = 6h(3)
�N/2�

W0

N
, (21)

where η ≈ 7.2W0/(U − U↑↓) is the anisotropy parameter and
χ sets the energy scale. Note here that χ sets the timescale,
which is independent of the tunneling rate J . In the two limit-
ing cases η = 0 and η = 1 the effective model (19) reduces to
the OAT and TACT models, respectively.

In Fig. 1(a) we show the spin-squeezing parameter (1)
obtained from the exact many-body numerical simulation
of the system dynamics under the dipolar Bose-Hubbard
Hamiltonian (9) and the effective two-mode model (19), see
Appendix D for more details concerning numerical simu-
lations. For the chosen set of parameters, the condensate
fraction is approximately 1, fc ≈ 1, at the timescale corre-
sponding to the best squeezing, which justifies our two-mode

FIG. 1. (a) Time evolution of the spin-squeezing parameter ξ 2

defined in (1) for different values of anisotropy parameter η =
{0.0, 0.5, 1.0} (lines from right to left). The two limiting cases, i.e.,
η = 0 and η = 1 correspond to OAT and TACT dynamics, respec-
tively. Points correspond to the results from the exact many-body
numerical simulation of ĤdBH given by (9), while solid lines to the
numerical results from the effective two-mode model (19) when N =
M = 10, U/J = 0.01 and U↑↓/J = 0.95U/J . (b) Color-encoded val-
ues of the spin-squeezing parameter ξ 2 versus χt and η obtained
from the numerical simulations of the two-mode model (19) for
N = 103 atoms. The solid red line indicates the best squeezing time.

approximation. In the case of the chromium atoms consid-
ered in Appendix A, the best squeezing time Jtbest/h̄ ≈ 500
corresponds to tbest ≈ 35ms when V0 = 3ER, where ER is the
recoil energy. The overall agreement between the two models
can be noticed. The acceleration of the squeezing dynamics is
visible by increasing the value of the anisotropy parameter.
In Fig. 1(b) we present a variation of the spin-squeezing
parameter ξ 2 in time and the anisotropy parameter η from the
two-mode model (19) for N = 103. We can observe the two
limiting cases corresponding to OAT and TACT dynamics for
η = 0 and η = 1, respectively. We observe a smooth transition
between OAT and TACT dynamics in the intermediate region.

In the next section, we provide an intuitive explanation
for the OAT-TACT crossover with the help of phase portrait
analysis of the two-mode model (19). In Sec. IV we derive

013311-3



MARLENA DZIURAWIEC et al. PHYSICAL REVIEW A 107, 013311 (2023)

FIG. 2. Mean-field phase portraits ε(φ, z) indicating geometrical representations of trajectories and directions of evolution for the effective
two-mode model (19) for the anisotropy parameter η = {10−5, 0.04, 0.4, 1.0} (from left to right). Arrows show the direction set by the vector
�n = (φ̇, ż). The angles θ between ingoing and outgoing flow along constant energy lines around the unstable fixed point are marked by red
(see main text). The corresponding values of angles θ are approximately π , 0.87π , 0.64π , 0.5π (from left to right). The left-most panel η ≈ 0
corresponds to OAT, where the distribution of a state localized around z = 0 is stretched during the evolution. While increasing η (consecutive
panels) we show how the trajectories around z = 0 change to form the saddle point resulting in stretching of the initial distribution located
nearby the saddle in two different directions with relative angle θ , realizing TACT at θ = π/2 when η = 1.0.

the scaling of the best squeezing and the best squeezing time
with N showing the acceleration of squeezing dynamics by
the dipolar interactions.

III. MEAN-FIELD PHASE PORTRAITS

The activation of the TACT dynamics by dipolar interac-
tions can be intuitively explained by analyzing the structure of
the mean-field phase space of the two-mode model (19). It is
a good navigator for the dynamical spin squeezing [25] as the
eigenstates of the quantum Hamiltonian localize on classical
phase-space energy contours [53] and quantum evolution dis-
tinguishes between stable and unstable classical fixed points
[54].

The analysis of the mean-field phase space is performed
by replacing the annihilation and creation operators by com-
plex numbers [55], â↑ → √

Nρ↑eiφ↑ , â↓ → √
Nρ↓eiφ↓ . This

allows to introduce the new canonical variables z = ρ↑ − ρ↓
and φ = φ↑ − φ↓ and transforms the spin operators to Ŝx →
N

√
1−z2

2 cos φ, Ŝy → N
√

1−z2

2 sin φ, Ŝz → N
2 z. The Hamilto-

nian (19) takes the form of the energy functional ε(φ, z):

ε(φ, z) = N

4
z2 − ηN

4
(1 − z2) cos2 φ. (22)

Equations of motions for the canonical position φ and the
conjugate momentum z are set by the Hamilton equations

φ̇ = ∂ε(φ, z)

∂z
= N

2
z + ηN

2
z cos2 φ,

ż = −∂ε(φ, z)

∂φ
= −ηN

2
(1 − z2) cos φ sin φ. (23)

In the following, we will analyze the topology of phase
portraits, which are a geometrical representation of the tra-
jectories of a dynamical system in the phase space. In our
case, the trajectories are tangent to the velocity field (φ̇, ż).
The phase portrait consists of fixed points or closed orbits cor-
responding to a steady state and satisfies (φ̇, ż) = (0, 0). Spin

squeezing takes place in the vicinity of unstable fixed points.
We are interested in the fixed point located at z = 0 and φ = π

2
according to the location of our initial spin coherent state. The
classification of fixed points can be found by analysis of the
eigenproblem of the stability matrix M, which in our case is

M =
[

∂2ε
∂z∂φ

∂2ε
∂2z

− ∂2ε
∂2φ

− ∂2ε
∂z∂φ

]
= N

2

[
0 1
η 0

]
. (24)

When η �= 0, the matrix M has two nondegenerate real eigen-
values of the opposite sign (λ1, λ2) = 1

2

√
ηN (−1, 1) and two

real eigenvectors

v1 =
[− 1√

η

1

]
, v2 =

[ 1√
η

1

]
. (25)

The scalar product of the two eigenvectors {v1, v2} defines the
angle θ between ingoing and outgoing trajectories crossing at
the center of the unstable saddle fixed points

θ = arccos
〈v1|v2〉
|v1||v2| . (26)

In Fig. 2 we show examples of the mean-field
phase portraits, i.e., the constant energy lines for η =
{10−5, 0.04, 0.4, 1}. The arrows indicate the direction of the
evolution and visualize the dynamics in the vicinity of the
fixed point. For η ≈ 0 the angle between ingoing and out-
going trajectories is θ ≈ π and corresponds to the pure OAT
dynamics with a nonisolated unstable fixed point. For η > 0
the nature of the fixed point changes to the unstable saddle
fixed point, see Figs. 2(b) to 2(d), which in the limiting case
η = 1 corresponds to the TACT dynamics, Fig. 2(d). Note the
angle θ is approximately π/2 when the value of the anisotropy
parameter η is 1. The change in the nature of the unstable fixed
point is responsible for the change in the scaling properties of
the best squeezing.
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IV. SCALING WITH THE SYSTEM SIZE

In this section, we study the scaling of the best squeezing
for the anisotropic TACT model (19). We apply the Gaussian
approach within the BBGKY hierarchy [48,49], which was
used in [25] to explain the scaling for the TACT model. Here,
we generalize the theory taking into account the values of
parameter η different than one.

We start with equations of motion for expectation values
of spin operators 〈 ˙̂S j〉, which involve terms that depend on the
first-order moments 〈Ŝ j〉 and second-order moments 〈ŜiŜ j〉.
Subsequently, the time evolution of the second-order moments
depend on themselves and on third-order moments, and so on.
It leads to the BBGKY hierarchy of equations of motion for
expectation values of operator products. The hierarchy is then
truncated by keeping the first- and the second-order moments

〈ŜiŜ j Ŝk〉 � 〈ŜiŜ j〉〈Ŝk〉+〈Ŝ j Ŝk〉〈Ŝi〉+〈Ŝ j Ŝi〉〈Ŝ j〉 − 〈Ŝi〉〈Ŝ j〉〈Ŝk〉.
(27)

To perform the scaling analysis, we first introduce a
small parameter ε = 1/N and transform the spin components
into Ĵ j = √

εŜ j which obey cyclic commutation relations
[Ĵx, Ĵy] = i

√
εĴz. The Hamiltonian (19) then reads Ĥ =

h̄χ

ε
(Ĵ2

z − ηĴ2
x ). Equations of motion for expectation values of

the spin operators 〈Ĵ j〉 ≡ h j , second-order moments 〈ĴiĴ j〉 ≡
�i j , and 〈Ĵ2

j 〉 − 〈Ĵ j〉2 ≡ δ j read

ḣy = 2(1 + η)�xz, (28)

�̇xz = −2(δz + ηδx )hy, (29)

δ̇z = −4η�xzhy, (30)

δ̇x = −4�xzhy, (31)

where time is measured in the dimensionless unit τ =
χt/

√
ε. The initial coherent state at the unstable saddle fixed

point |�(0)〉 = |θ = π/2, ϕ = π/2〉 gives the following ini-
tial conditions: hy(0) = (2

√
ε)−1, δz(0) = δx(0) = 1/4, and

�xz(0) = 0. To find the approximate solution we introduce
the two quadratures X = δz + √

η�xz and Y = δz − √
η�xz

obeying the dynamical equations Ẋ = −4
√

ηXhy and Ẏ =
−4

√
ηY hy, which have the following solutions:

X (t ) = X (0)e−4
√

η f (τ ), (32)

Y (t ) = Y (0)e4
√

η f (τ ), (33)

where f (τ ) = ∫ τ

0 hy(τ ′)dτ ′ for η �= 0. This gives

δz(τ ) = δz(0) cosh [4
√

η f (τ )], (34)

�xz(τ ) = −δz(0)√
η

sinh [4
√

η f (τ )], (35)

hy(τ ) − hy(0) = −δz(0)√
η

∫ τ

0
sinh [4

√
η f (τ ′)]dτ ′. (36)

In principle, the solution for hy can be find in a self-
consistent way, here, however, we approximate it by taking the

FIG. 3. (a) Examples of the scaling of the best squeezing ξ 2
best

and the best squeezing time χtbest with the number of atoms N for
various values of the parameter of anisotropy η = {1, 0.5, 10−3}.
(b) Scaling exponents α obtained by fitting the function ∝ N−α to the
best squeezing ξ 2

best is shown by the red points (red solid line is added
to guide the eye). The angle θ between the ingoing and outgoing
mean-field trajectories (see main text) is shown by the dashed blue
line.

first iteration, namely, f (τ ) � f (0) + f ′(0)τ , which results in

hy(τ ) = 1

2
√

ε

{
1 + (1 + η)ε

2η
[1 − cosh(2τ

√
η/ε)]

}
. (37)

Next, one evaluates the evolution of (34) and (35) by taking
(37) in f (τ ). Finally, noting that the spin-squeezing parameter
(1) is determined by the quadrature X (t ), namely, ξ 2 ≈ X (t )
when approximating 〈S〉 ≈ hy(0)/

√
ε, we obtain the scaling

of the best squeezing and the best squeezing time with N by
keeping the leading-order terms in ε, which results in

ξ 2
best ∼ 1/N, χtbest ∼ ln(ηN )√

ηN
, (38)

when η is of the order of one. We compared the above analyt-
ical predictions with the numerically solved set of differential
equations (28) to (31) and confirmed the scaling (38) when
η ∈ (0.3, 1).

The quantitative illustration of the above results can be
provided by analyzing the scaling of the best squeezing with
N obtained from the numerical time evolution of the TMM
Hamiltonian (19). Figure 3(a) presents the best squeezing ξ 2

best
and the best squeezing time χtbest as a function of particle
number N . Power-law behavior can be noticed for various
η. Therefore, for each value of the anisotropy parameter η

we extracted the scaling exponent α by fitting ξ 2
best ∼ N−α .

Figure 3(b) shows the change of the fitted exponent α as the
function of anisotropy parameter η and is compared to the
variation of the angle θ . A characteristic feature is a change
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in the value of α when η ∈ (10−3, 10−1). In the same range
θ diminishes from π to approximately π/2. We conclude the
variation of α is driven by the change in the structure of the
unstable fixed point. It is worth mentioning here that α ≈ 1
when η ≈ 1. Our results show that the Heisenberg limited
level of squeezing is possible in the proposed realization of
the anisotropic TACT model.

V. CONCLUSION

In this work, we show how the OAT mechanism, gen-
erating many-body entanglement, can be accelerated by the
long-range interactions via activation of the anisotropic TACT
mechanisms. We explain the activation of the TACT mecha-
nism during competition of contact and dipolar interactions
between bosons in a superfluid phase. We propose the experi-
mentally feasible quantum simulator for the anisotropic TACT
dynamics based on dipolar two-component Bose-Hubbard
in a one-dimensional optical lattice. With the help of the
scaling analysis, we show that it is possible to obtain a
Heisenberg-limited level of squeezing for a weak anisotropy.
The anisotropic TACT model accelerates the spin-squeezing
dynamics compared to OAT with the improvement of the
level of squeezing. Our protocol allows for fast generation of
many-body entangled states with entanglement depth larger
than in a standard OAT scenario.

Our work provides an essential step toward generating
many-body-entangled states during the two-axis countertwist-
ing protocol in state-of-the-art experimental setups, paving
the way for obtaining the Heisenberg limit of spectroscopic
measurements in ultracold atoms systems.
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APPENDIX A: IMPLEMENTATION OF THE METHOD

To estimate the characteristic energy and timescales we
assume the tunneling is possible only along the x direction
while transversely the atoms are in a localized wave function
that is approximated by a Gaussian with a characteristic length
L⊥. In the absence of the lattice, the system is homogeneous,
the atoms being confined in a flat-bottom potential. In the
range of parameters V0/ER > 1, the Wannier functions can be
approximated by Gaussian functions whose width is set by the
frequency associated to each lattice site minimum [56]. There-
fore, w(x) ≈ ( k2

π
)1/4( V0

ER
)1/8e−√

V0/ERk2x2/2. Here, k = 2π/λlatt

and further d = λlatt/2. This is a fairly good approximation to
obtain the interaction coefficient

Uσσ ′

ER
≈

√
32

π

aσσ ′d

L2
⊥

(
V0

ER

)1/4

. (A1)

The tunneling rate is then well approximated by [57], yielding

J

ER
≈ 4√

π

(
V0

ER

)3/4

e−2
√

V0
ER , (A2)

see also [35] for more details. The above two approximated
formulas give access to the estimation of the corresponding
energy scales.

In the observed dynamics generated by the nonisotropic
TACT the considered atoms must be magnetic to have a large
dipole moment resulting in the value of η of the order of one,
for example, chromium atoms [51] or the lanthanides Er and
Dy [58]. The high degree of tunability of interatomic interac-
tions opened the path to a study of magnetic dipolar effects
and their role in Hubbard dynamics. These magnetic atoms
usually have spin larger than 1/2. Therefore, methods for the
restriction of the dynamics to two Zeeman states, as, e.g., in
[59], are necessary. To be concrete, let us consider magnetic
chromium atoms 52Cr as in the recent experiment [51]. The
atoms are loaded into an optical lattice generated by laser light
of the wavelength λlatt = 532 nm. The corresponding recoil
energy is then ER/h̄ = 2π×13.5 kHz. The external magnetic
field aligned along z axis and the corresponding Zeeman shift
split the magnetic components. Initially, the atoms are pre-
pared in a superposition of ms = −3 and ms = −2 Zeeman
states. The later term corresponds to the ↓ and ↑ states,
respectively. The magnetic field can be used to bring these
two states on-resonance and separate them from the others.
Therefore, the short-range contact interactions of atoms is
only within S = 6 and S = 4 channels characterized by the
two scattering lengths a6 = 103aB and a4 = 64aB [51,60],
respectively, where aB is the Bohr radius.
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To have strong tunneling J with respect to the interaction
strength Uσσ ′ , we can tune either the scattering length aσσ ′

using Feshbach resonances [61], properly set the characteris-
tic transverse length L⊥, or adapt both of them. According to
(A1) and (A2), the corresponding relation for J > U gives us
L2

⊥/(a↑↑d ) > e2
√

V0/ER
√

2ER/V0 [62]. The tunneling estimated
by (A2) is J/h̄ = 2π×2.17kHz when V0 = 3ER.

The characteristic dipole-dipole energy for chromium
atoms is W0/h̄ = γ 2h̄2μ0/4πd3 ≈ 2π×2.8 Hz, or equiva-
lently, W0/J ≈ 10−3 for V0/ER ≈ 3. Therefore, to have η ≈ 1
the relation between interaction coefficients should be (U −
U↑↓)/J ≈ 7.2×10−3. Tuning of the scattering lengths aσσ ′ or
the system geometry via L⊥ would be necessary to meet this
condition. We stress that assumption U↑↑ = U↓↓ in (18) was
made to make the term proportional to Ŝz,qn=0 equal to zero
in (13). The assumption does not need to be fully fulfilled
to achieve the same level of squeezing and time as long as
�SS � �SN , regardless of the specific values of Uσσ ′ .

A properly chosen external magnetic field is needed to
provide a sufficiently large Zeeman splitting preventing any
spin dynamics, both due to spin-changing collisions triggered
by contact and dipole-dipole interaction. As such, the effective
spin-1/2 model assumed here is a valid approximation. In the
absence of spin-changing collisions as well as demagnetiza-
tion, the coherence time can be of the order of seconds [63].
The anisotropy parameter η can be tuned by changing Uσσ ′

via optical Feshbach resonances [64] to obtain the value of η

close to 1. Standard Feshbach tuning of a scattering length by
utilizing a magnetic field might also be used, provided that the
resonant value of the magnetic field is large enough to ensure
sufficiently large Zeeman splitting, as discussed above.

Finally, to measure the spin-squeezing parameter ξ 2,
the two-body correlators of the collective spin operators
are needed. Such measurements were recently successfully
demonstrated in experiments [63].

APPENDIX B: DIPOLAR INTERACTION

To obtain the lattice version of dipolar interaction we start
with the Hamiltonians (6) and (8)

Ĥd =
∫

d3r1

∫
d3r2

γ 2μ0 h̄2

4π |r1 − r2|3

×
{

(1 − 3 cos2 θ12)

(
Ĵ z

1 Ĵ z
2 − Ĵ+

1 Ĵ−
2 + Ĵ−

1 Ĵ+
2

4

)

− 3

4
sin2 θ12(e2iφ12 Ĵ−

1 Ĵ−
2 + H.c.)

−3

4
sin 2θ12

[
eiφ12

(
Ĵ z

1 Ĵ−
2 + Ĵ−

1 Ĵ z
2

) + H.c.
]}

, (B1)

with r1 �= r2, and where Ĵ+
1 = �̂

†
↑(r1)�̂↓(r1), Ĵ−

1 =
�̂

†
↓(r1)�̂↑(r1), Ĵ z

1 = [�̂†
↑(r1)�̂↑(r1) − �̂

†
↓(r1)�̂↓(r1)]/2, and

similarly at r2. The two angles φ, θ parametrize the
normal vector along the r1 − r2 direction, namely,
�n12 = r1−r2

|r1−r2| = (cos φ12 sin θ12, sin φ12 sin θ12, cos θ12).
We assume the system is loaded into the one-dimensional

optical lattice potential, while remaining in its ground state
in transverse directions. We assume also the atomic gas is

FIG. 4. Schematic of the geometry of the system: gray arrows
indicate an initial configuration of the elementary dipoles and the
green curve of the optical lattice potential.

polarized initially along the z axis and the polarization axis
sets the quantization axis, as illustrated in Fig. 4. Therefore,
we consider the following form of the field operator:

�̂↑(r) = �̂↑(x)φ(y)φ(z), (B2)

and we expand �̂↑(x) in the basis of Wannier functions w(x −
x j ) localized around lattice sites, where x j denotes the position
of the jth site in the lowest-energy band

�̂↑(x) =
∑

j

â↑, jw(x − x j ), (B3)

where â j,↑ annihilates an atom in the single-particle Wannier
state w(x − x j ) of the lowest-energy band localized on the jth
site, in the internal state ↑. In (B2) we assume φ(y) and φ(z)
are the ground-state wave functions of the system in the y and
z directions. The same applies to the ↓ operator.

The geometry of the system we chose determines the nor-
mal vector �n = (1, 0, 0) and sets the value of θ12 = π/2 and
φ12 = 0. Taking this into account, in the tight-binding limit the
dipolar Hamiltonian reduces to (11) due to the normalization
of the wave functions.

It is worth commenting here about the importance of the
geometry chosen. There is a symmetry between the x and
y axes, i.e., if the lattice was along the y axis, the resulting
Hamiltonian (11) would have the factor of −2 in the front of
the Ŝy

j Ŝ
y
k term. On the other hand, if the lattice was along the

z axis, the factor −2 would appear in the front of Ŝz
j Ŝ

z
k . This

has an important consequence in the resulting effective model
(19), which would be the OAT one.

APPENDIX C: DIPOLAR INTERACTIONS
AND TWO-MODE MODEL

The approximation leading to the two-mode model relies
on the macroscopic occupation of the zero quasimomentum
mode. It is controlled by the condensate fraction. Here we
show how the dipolar part of the two-mode effective model
can be derived from (11). To be more specific, we consider
(11) in the Fourier space

Ĥd = 1

N

∑
q1,q2

∑
j,k �= j

Wjk (Ŝz,q1 Ŝz,q2 − 2Ŝx,q1 Ŝx,q2

+ Ŝy,q1 Ŝy,q2 )ei2π (q1 j+q2k)/N , (C1)

which, by keeping the parts for q1 = q2 = 0, reads

Ĥd,qn=0 = 1

N

∑
j,k �= j

Wjk
(
Ŝ2

z,qn=0 − 2Ŝ2
x,qn=0 + Ŝ2

y,qn=0

)
. (C2)
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Finally, as the total spin is conserved we can always use
Ŝ2

z,qn=0 + Ŝ2
y,qn=0 = Ŝ2

qn=0 − Ŝ2
x,qn=0, which leads to

Ĥd,qn=0 = 1

N

∑
j,k �= j

Wjk
(
Ŝ2

qn=0 − 3Ŝ2
x,qn=0

)
. (C3)

To obtain the equation of the form (17) we set
∑

j,k �= j Wjk =
2h(3)

�N/2�W0, where h(3)
�N/2� = ∑�N/2�

l=1 1/l3.

APPENDIX D: NUMERICAL EVALUATION OF SPIN
SQUEEZING PARAMETER

1. Dipolar Bose-Hubbard model

We performed the full many-body numerical simulations
of ĤdBH = ĤBH + Ĥd with (10) and (11). To this end, we
constructed the Fock states basis, as described in [35]. We
implemented numerically the matrix representation of the
Hamiltonian ĤdBH, and the initial spin coherent state is

|�(0)〉 = |θ, ψ〉 = e−iŜzψe−iŜyθ |�a〉, (D1)

where |�a〉 is the system’s ground state when all atoms are
in the |↑〉 state. The system evolves according to the unitary
operator, namely,

|�(t )〉 = e−iĤdBHt/h̄|�(0)〉, (D2)

and the spin-squeezing parameter (1) is calculated.

2. Two-mode model

To find the scaling exponents, we perform numerical time
evolution of the TMM. We express Hamitlonian (19) in
the Fock-state basis consisting of the vectors of the form
|n, N − n〉, where N is the total number of atoms, n is the
number of the particles in the |↑〉 state, and N − n is the
number of the particles in the |↓〉 state.

Our initial state is the spin-coherent state, which we obtain
as a double rotation of the state |N, 0〉 according to

|�(0)〉 = |θ, ψ〉 = e−iŜzψe−iŜyθ |N, 0〉. (D3)

Next, we apply the unitary evolution

|�(t )〉 = e−iĤTMMt/h̄|�(0)〉, (D4)

we calculate the spin squeezing parameter (1) and find its first
minimum ξ 2

best, as well as the time at which it occurs χtbest.
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Chapter 6

Spin Squeezing through Spin
Orbit Coupling in the Mott
Insulating Phase

In the previous chapter we proposed a setup in the superfluid regime that
achieves a continuous transition between OAT and TACT, in principle reach-
ing the Heisenberg limit. However, this proposal has several experimental
difficulties like particle losses due to collisions and changes in the dipole in-
teractions due to more realistic geometries of the lattice. In this chapter we
propose to work in the Mott insulating regime to tackle these issues. To gen-
erate squeezing, we rely on second-order perturbation theory and build an op-
timal perturbation through the so-called spin-orbit coupling term. Finally, we
find interesting differences between working under periodic and open boundary
conditions, even yielding non-vanishing discrepancies when M → ∞.

The results shown in this chapter are the result of our own research and
have been published as:

T. Hernández Yanes, M. Płodzień, M. Mackoit Sinkevičienė, G. Žlabys,
G. Juzeliūnas, and E. Witkowska, “One- and Two-Axis Squeezing via Laser
Coupling in an Atomic Fermi-Hubbard Model”, Physical Review Letters 129,
090403 (2022),

T. Hernández Yanes, G. Žlabys, M. Płodzień, D. Burba, M. M. Sinke-
vičienė, E. Witkowska, and G. Juzeliūnas, “Spin Squeezing in Open Heisenberg
Spin Chains”, Physical Review B 108, 104301 (2023).

6.1 Perturbation theory for the Mott Insulating
Phase

One way to minimise particle losses is to reduce the number of collisions pos-
sible in the system. Fermions are a natural choice for this because of the
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exclusion principle, which allows to have up to two particles of different spin
per site. This automatically reduces the collisions with respect to bosons.

Another strategy to reduce collisions is to work in a phase of matter where
they are highly unlikely. In contrast with the superfluid phase, the Mott
insulating phase (J ≪ U) keeps the system into the single occupied states
manifold. Even if our initial state had double occupied sites in it, particle losses
due to collisions will be more favourable due to the strong contact interactions
and we will eventually reach a state of single occupied sites. Alternatively,
quantum distillation [116] allow us to retrieve a state of single occupied sites
and discard the double occupied sites as they move to the boundaries of the
system.

As described in section 3.3, in the Mott insulating phase particles can
still tunnel freely if holes are present, obtaining the so-called t–J model [117].
But if the system is at half-filling (M = N) the lattice is fully occupied and
tunnelling processes are effectively suppressed.

E

U

0

√
2J

J

Figure 6.1: Sketch of energy manifolds and couplings among a selected num-
ber of possible states in the Fermi–Hubbard Hamiltonian for a lattice of three
sites and two particles of opposite spin (M = 3, N↑ = 1, N↓ = 1). Lattice sites
are represented by rectangles while particles are represented with circles of dif-
ferent colour for the spin. Couplings are given by ⟨ψi| Ĥtun |ψj⟩ while energies
are calculated with ⟨Ĥint⟩. Couplings of magnitude

√
2J, J are represented

with black and grey arrows, respectively. If ∆E = U ≫
√
2J , we may apply

perturbation theory to obtain an effective Hamiltonian from second-order pro-
cesses.

In such case, the Fermi–Hubbard model (introduced in section 3.1, eq. (3.9))
becomes Ising-like, which is usually referred to as a Heisenberg model [101].
In the case of the Fermi–Hubbard model, the result reduces directly to the
Heisenberg XXX model, also known as the Spin Exchange Hamiltonian

ĤSE = JSE
∑

j

(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 −

1

4

)
, (6.1)
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where JSE = 4J2/U .
While these constraints are beneficial to avoid particle losses by collisions,

generating quadratic Hamiltonians under these conditions is more involved
than in the superfluid regime.

One way to find them is to use the exact same tool which allows us to
map to the XXX model, the Schrieffer-Wolff transformation introduced in
chapter 4. If a given state belongs to a certain energy manifold given by the
partial Hamiltonian Ĥ0, but another part of the full Hamiltonian V̂ couples
said state to a different manifold, we can use perturbation theory to treat
this coupling as a virtual transition. If the energy gap is sufficiently large,
the transition will be fast enough so that the result is an effective transition
between states of the initial manifold. If such a process is second-order only, it
produces an effective coupling which is quadratic, or at the very least a product
of two terms that correspond to the coupling term V̂ . For more details, see
section 4.1.

With this in mind, we can start thinking on the required constraints so
that spin squeezing is optimal, like the energy manifold we want to isolate the
excited states manifold we want to use for the required virtual processes.

By inspection of the spin squeezing parameter (2.43), it becomes clear we
want a state that maximises ⟨Ŝn⟩, so we want our initial state to have the
maximal total spin possible. Naturally, we can pick a spin coherent state as
our initial state so satisfy this condition. These states are also eigenstates of
ĤSE, since they conserve the SU(2) symmetry.

We must now look for the high energy manifold we plan to use as a stepping
stone for our quadratic Hamiltonian. Since we want our perturbation to be
proportional to the spin operators to obtain the result we desire, a natural
proposition is to construct an eigenstate from local spin excitations. If we
solve the eigenvalue problem in such a way for PBC, we will find the so called
spin wave states, also known as magnons in the literature [105], which can also
be obtained through the Bethe ansatzs [104], as explained in section 3.3.

|S = N/2− 1,m, q⟩ =
∑

j

e2πqj/M Ŝ±
j |S = N/2,m∓ 1⟩ , (6.2)

where q ∈ [1,M − 1].
These states belong to a lower total spin manifold and are eigenstates of

ĤSE with eigenvalue Eq = JSE(1− cos 2πq/M).
With all other pieces in place, the only elements missing are the pertur-

bation that matches the coupling between energy manifolds and to make the
magnitude of this perturbation sufficiently small with respect to the energy
gap.
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6.2 Squeezing via Spin Orbit Coupling in the Mott
Insulating Phase

We found the historically called spin orbit coupling (SOC), more aptly referred
to as atom light coupling in this context, matches the generator of the spin
waves states with the form

ĤSOC = Ω
∑

j

(
eiϕjŜ+

j + e−iϕjŜ−
j

)
. (6.3)

This term can be derived from the interaction of a classical light field with
the particles in the lattice when the angle of incidence and wavelength of said
light source doesn’t match those of the lattice potential.

We analytically found the SOC term survives and mostly doesn’t affect
the Mott insulating phase mapping if J ≪ U,Ω ≪ U . If applied as is, this
term will generate on-site spin flips which will complicate the perturbation
theory analysis. However, if we apply a unitary transformation so this term is
diagonal, we will see virtual processes involving tunnelling and spin flipping at
the same time. After application of perturbation theory, we go back to the lab
frame by applying again the unitary transformation to obtain the first effective
Hamiltonian. While some corrections appear like the Dzyaloshinskii–Moriya
interaction, they are highly suppressed if these conditions are fulfilled.

E

U

0

J√
2
(1− e±iϕ)

J√
2
(1 + e±iϕ)

−Ω

Ω

Figure 6.2: Similar sketch as in fig. 6.1, but including the spin-orbit coupling
term for a two-site lattice at half-filling (M = N = 2). The Hamiltonian
has also being transformed to diagonalise the spin-orbit coupling term. Black
and grey arrows corresponds to coupling strengths J√

2
(1+ e±iϕ), J√

2
(1− e±iϕ),

respectively.

Now we can finally apply second-order perturbation theory to our al-
ready perturbed Hamiltonian to obtain an effective model with quadratic
form. Under PBC, the phase ϕ must be commensurate with the lattice so
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that ϕ = 2πn/M . Then, we obtain

Ĥ
(2)
eff =

{
−2χϕŜ

2
x if ϕ = π,

χϕŜ
2
z else,

(6.4)

where

χϕ =
Ω2

2JSE (1− cosϕ)

1

M − 1
. (6.5)

Interestingly, this means we can achieve not only a OAT model in different
quantisation axis by tuning the phase ϕ, but also generate TACT by including
different SOC terms in our Hamiltonian through the use of multiple off-axis
light sources.

While this is sufficiently remarkable on it’s own, we found the spin wave
states change their form under OBC. This resulted in the unexpected realisa-
tion that, while our base Hamiltonian looks barely identical than under PBC,
we obtain a much richer effective Hamiltonian for the same perturbation. After
the appropriate phase shift, the effective Hamiltonian can be expressed as

Ĥeff = χ
(
Ŝ2 + Ŝ2

z − ηŜ2
x + ηŜ2

y + γŜx

)
, (6.6)

where all parameters depend on ϕ.
These new terms and coefficients with respect to PBC appear because we

allow the phase ϕ to be non-commensurate with the lattice, ϕ ̸= 2πq/M ; ∀q ∈
[1,M − 1]. This means we excite a number, if not all, of the spin wave states
with different fidelity, tuning the parameter η accordingly. This has the dis-
advantage that the energy gap condition can become more restrictive on these
phases. However, this effect becomes less prominent with the system size. On
the other hand, η allows us to obtain more squeezing than the OAT model, as
it becomes closer to a TACT model.

The largest complication from these non-commensurate phases is the ap-
pearance of a linear term with coefficient χγ in eq. (6.6). This term acts as a
fast rotation of the state in the Bloch sphere, suppressing the twisting effect of
any term not aligned with its rotation axis. In any case, it will at most reduce
the squeezing level to that of the OAT model if we choose an initial coherent
state orthogonal to the given axis.

To better understand this effect, we may analyze the TACT-OAT transition
in a simpler model, illustrated in fig. 6.3. If the Hamiltonian is given by

Ĥ = χ
(
Ŝ2
z − Ŝ2

y

)
+ vŜz, (6.7)

we may wonder at which point the linear term vŜz dominates the dynamics.
We can estimate the magnitude of the terms from the maximal spin length of
the system, which is S = N/2. In that case, the magnitude of the TACT term
ĤTACT = χ(Ŝ2

z − Ŝ2
y) may have the ceiling ∼ χ(N/2)2. Likewise, the linear
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term vŜz will have a magnitude ∼ vN/2. When the linear term is negligible
(v ≪ χN/2) the evolution is akin to the pure TACT model. However, when the
linear term dominates (v ≫ χN/2) the state rotates around the Bloch sphere
very fast. The squeezing effect produced on one side of the sphere is cancelled
by immediately turning to the opposite side, where the twisting is excecuted
in the opposite direction. Only the twisting along the z-axis remains, since
its unnaffected by the linear term. This effect is obscured in the mean-field
portrait, as the linear term dominates the energy. A rotated frame treatment
might help to recover more accurate streamplots.

In any case, for phases ϕ ̸= π but commensurate with the lattice, we do
not obtain a OAT model like under PBC but an anisotropic TACT model
with η = 1/2. This result does not vanish when M → ∞, showing boundary
conditions are critical for this system.
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The probability distribution slowly
leaves the unstable fixed point,

avoiding full squeezing of the state.

v � Nχ

Quick rotation to the opposite side
of the sphere mostly counteracts
the twisting around the y axis.

v � Nχ

Ĥ = ĤTACT +Nχ/10Ŝz Ĥ = ĤTACT + 10NχŜz

0.00 0.01 0.02 0.03 0.04 0.05

χt

10−1

100

ξ2

OAT

TACT

0.00 0.01 0.02 0.03 0.04 0.05

χt

0.000 0.017 0.028

χt

0.000 0.016 0.032 0.048

χt

Figure 6.3: Illustrative example of transition from TACT dynamics , ĤTACT =
χ(Ŝ2

z−Ŝ2
y), to OAT dynamics , ĤOAT = χŜ2

z , through a linear term vŜz. In the
left column, we observe the effect of a linear term being smaller than the TACT
model (v = Nχ/10). In the right column, the linear term is larger than the
TACT model (v = 10Nχ). The top row briefly describes the corresponding
effect of the linear term. The middle row shows Bloch spheres in Hammer
projection where different colors identify different points in time. The bottom
row compares the exact numerical results of the squeezing parameter to portray
the transition from TACT-like dynamics to OAT-like dynamics. Colored points
indicate the same moments in time as in the middle row panels. N = 100.
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Generation, storage, and utilization of correlated many-body quantum states are crucial objectives of
future quantum technologies and metrology. Such states can be generated by the spin-squeezing protocols,
i.e., one-axis twisting and two-axis countertwisting. In this Letter, we show activation of these two
squeezing mechanisms in a system composed of ultracold atomic fermions in the Mott insulating phase by
a position-dependent laser coupling of atomic internal states. Realization of both the squeezing protocols is
feasible in the current state-of-the-art experiments.
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Introduction.—The fundamental interest of emerging
quantum technologies lies in many-body entangled and
Bell correlated states, their production, and storage [1–4].
Spin-squeezing protocols, i.e., one-axis twisting (OAT) and
two-axis countertwisting (TACT), represent such a resource
[5,6] particularly useful for high-precision measurements,
allowing one to overcome the shot-noise limit [7–9], and
study many-body entanglement [10–14] and Bell correla-
tions [15–22]. It applies to systems composed ofN particles
in two quantum states described by a spin of quantum
number S ¼ N=2, when the final measurement is per-
formed by spectroscopic experiments. The uncertainty of
such a measurement is ξ=

ffiffiffiffi
N

p
, where ξ is the spin-squeez-

ing parameter [6], and wherein the shot-noise limit is
1=

ffiffiffiffi
N

p
. Simulation of OAT by means of unitary evolution

requires a nonlinear term in the Hamiltonian system. Such a
term can be cast in the form Ŝ2z with z being the twisting
axis. TACT is a natural extension of the OAT model where
the clockwise and counterclockwise twisting takes place
around two orthogonal axes, such as z and x, and can be
described by the term Ŝ2z − Ŝ2x. The lowest value of the
squeezing parameter is ξbest ∝ N−1=3 for OAT and ξbest ∝
N−1=2 for TACT.
From an experimental point of view an important aspect

in simulation of OAT and TACT is a well-controlled
quantum many-body system. Several methods were pro-
posed with ultracold atoms, through the quantum non-
demolition measurements [23], transfer of squeezing from
light to atomic ensembles [24], or utilizing atom-atom
interactions [25]. Proof-of-principle experiments were
already performed to demonstrate spin squeezing via
OAT with Bose-Einstein condensates utilizing atom-
atom collisions [26–29] and atom-light interactions in
cavity setups [30,31]. On the contrary, TACT was not

demonstrated experimentally yet, despite several methods
having been proposed [32–38]. Currently, intensive
research is carried out in lattice systems in the context
of atomic lattice clocks [39–45]. The drawbacks of spin-
squeezing generation with bosonic atoms are collision
decoherence processes and losses [7]. An alternative is
offered by spinful fermions in the Mott insulating
phase where each lattice site is occupied by a single
atom, and hence, the collision decoherence processes are
reduced [46].
In this Letter, we study theoretically a scheme for the

dynamical generation of both OAT and TACT by a
position-dependent laser coupling of two atomic internal
states, denoted by j↑i and j↓i, of N atomic fermions in a
lattice, as illustrated in Fig. 1(a). We describe the system by
the Fermi-Hubbard model (FHM). Additionally, there is a
coupling between two internal states of atoms, i.e., Raman
coupling or direct optical transitions, which effectively
acts as the spin-orbit coupling in the momentum repre-
sentation [47–56]. Generation of OAT due to such coupling
was proposed for trapped ions [57] and ultracold fermions
following additional site-dependent spin rotations [41,44].
Here, we show how not only the OAT but also TACT can be
simulated directly from the FHM without any additional
manipulation of individual spins.
We study the Ramsey-type spectroscopy scheme in

which the coupling between atomic internal degrees of
freedom is turned on during the interrogation time, as
sketched in Fig. 1(c). The generation of spin squeezing
starts after the preparation of an initial spin coherent state
which subsequently undergoes a unitary evolution. The
spin-squeezing parameter ξ2 ¼ NðΔS⊥Þ2min=hSi2 [6] is then
measured, where hSi is the length of the mean collective
spin and ðΔS⊥Þ2min is the minimal variance of the collective
spin orthogonally to its direction. We show analytically that
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the FHM in the Mott regime, supplied with the weak
atom-light coupling, simulates both twisting models.
Specifically, applying a single laser beam, the atom-light
coupling induces OAT with a tunable axis of squeezing.
This paves the way for the simulation of the famous TACT
model [5,58] when two laser couplings are used during the
interrogation time. To illustrate and demonstrate the val-
idity of our analytical finding we perform full many-body
calculations [59] for several atoms taking into account
periodic and open boundary conditions.
Model.—We consider N fermionic ultracold atoms, each

in two internal states j↑i and j↓i corresponding to a spin-1=2
degree of freedom, loaded into a one-dimensional optical
lattice potential ofM sites. The atoms are assumed to occupy
the lowest Bloch band, interact through s-wave collisions,
and hence can be described by the FHM. In addition, we
include a laser driving term which induces a position-
dependent spin-flip coupling (SFC) between atomic spin
states. The Hamiltonian for such a system reads as

Ĥ ¼
XM0

j¼1

Ĥtunnel
j þ

XM
j¼1

Ĥint
j þ

XM
j¼1

ĤL
j ; ð1Þ

Ĥtunnel
j ¼ −J

X
s¼↑;↓

ðâ†j;sâjþ1;s þ H:c:Þ; ð2Þ

Ĥint
j ¼ Un̂j;↑n̂j;↓; ð3Þ

ĤL
j ¼ ℏΩ

2
ðeiϕjâ†j;↑âj;↓ þ e−iϕjâ†j;↓âj;↑Þ; ð4Þ

where the fermionic operators âj;s annihilate an atom in the

jth lattice site in the state s ∈ f↑;↓g, and n̂j;s ¼ â†j;sâj;s is
the corresponding operator of the number of atoms. The
upper limit of summation is M0 ¼ M under periodic boun-
dary conditions (PBC), orM0 ¼ M − 1 under the open ones
(OBC). The terms Ĥtunnel

j and Ĥint
j describe the FHM inclu-

ding on site nearest-neighbor tunneling of fermions with rate
J and on site repulsion of strengthU. The term ĤL

j represents
the on site laser coupling, with amplitude ℏΩ and position-
dependent phase ϕj, where ϕ ¼ π cosðηÞλlatt=λL can be
tuned by properly choosing the angle η between laser beams
producing the optical lattice and the direction of the laser
field inducing the SFC. The wavelength of the latter field λL
can differ from the underlying lattice wavelength λlatt, as
depicted in Fig. 1. The system has been realized experi-
mentally using the optical clock transition between two
electronic orbital states of 87Sr atoms [71,72]. The FHM can
also be experimentally simulated using tweezer arrays
[73,74].
We consider the system in the Mott insulating phase for

U ≫ J, with even N and at half filling, M ¼ N, when
double occupancy of a single site is energetically un-
favorable. The second order processes, obtained by a
projection of the Hamiltonian onto the low energy manifold
by using the Schrieffer–Wolff transformation [44,75–78],
lead to the nearest-neighbor spin exchange (SE) interaction
[79] corrected by the atom-light coupling term:

Ĥspin ¼
XN0

j¼1

ĤSE
j þ

XN
j¼1

Ĥ↑↓
j ; ð5Þ

ĤSE
j ¼ JSE

�
Ŝxj Ŝ

x
jþ1 þ Ŝyj Ŝ

y
jþ1 þ ŜzjŜ

z
jþ1 −

1

4

�
; ð6Þ

Ĥ↑↓
j ¼ J↑↓ðeiϕjŜþj þ e−iϕjŜ−j Þ; ð7Þ

where the on site spin operators are Ŝþj ¼ â†j;↑âj;↓,

Ŝ−j ¼ â†j;↓âj;↑, Ŝ�j ¼ Ŝxj � iŜyj , and Ŝzj ¼ ðn̂j;↑ − n̂j;↓Þ=2.
The form of the spin Hamiltonian [Eq. (5)], with JSE ≈
4J2=U and J↑↓ ≈ ℏΩ=2, is valid when U ≫ ℏΩ. The spin
Hamiltonian [Eq. (5)] can be obtained by making ĤL

j

position independent via a j-dependent spin rotation [44]
and returning to the original frame at the end of

(a)

(b) (c)

FIG. 1. (a) FHM for atoms in optical lattices with nearest-
neighbor tunneling rate J, on site interaction U, and additional
coupling between atomic internal degrees of freedom with
position-dependent strength Ωeiϕj realized with one or two off
resonant laser beams. (b) The coupling causes the transition
between the DN=2 and DN=2−1 spin manifolds (see main text). In
the weakly coupling regime, the projection of the Hamiltonian
onto the Dicke manifoldDN=2 leads to the OAT (single beam) and
TACT (two beams) models. (c) The Ramsey-type spectroscopy
for the spin-squeezing generation: (i) preparation of the initial
spin coherent state in the DN=2 manifold, (ii) unitary evolution
with the FHM and nonzero coupling reduces the value of ξ2,
(iii) storing the spin squeezed state in the Mott phase for zero
atom-light coupling.
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calculations; see derivation and general form of Eq. (5) in
Sec. I of the Supplemental Material [80].
Simulation of the OAT model.—If there is no atom-light

coupling, Ω ¼ 0, the spin Hamiltonian reduces to the SE
Hamiltonian ĤSE ¼ P

j Ĥ
SE
j whose eigenstates include

Dicke states jN=2; mi ∝ ŜN=2−m
− ⊗N

j¼1 j↑ij characterized
by zero eigenenergy [80]. Here, S ¼ N=2 is the spin
quantum number and m ¼ −S;−Sþ 1;…; S is the
spin projection quantum number, i.e., Ŝ2jN=2; mi ¼
N=2ðN=2 − 1ÞjN=2; mi and ŜzjN=2; mi ¼ mjN=2; mi,
where Ŝ2 ¼ Ŝ2x þ Ŝ2y þ Ŝ2z and Ŝw ¼ P

N
j¼1 Ŝ

w
j are the col-

lective spin operators for w ¼ x; y; z;�. Consequently, the
initial spin coherent state jθ;φi ¼ e−iŜzφe−iŜyθ ⊗N

j¼1 j↑ij
does not evolve in time, and no squeezing can be gene-
rated. A nontrivial evolution of the initial state appears
when Ω ≠ 0 due to the atom-light coupling term
Ĥ↑↓ ¼ P

j Ĥ
↑↓
j . In particular, the action of Ĥ↑↓ onto the

Dicke states gives Ĥ↑↓jN=2;mi¼J↑↓c−1N=2;mþ1jq;mþ1i−
J↑↓c−1N=2;m−1jq;m−1i, where

jq;mi≡�cN=2;�m

XN
j¼1

e�iqjŜ�j jN=2; m ∓ 1i ð8Þ

are spin-wave states [82] for PBC, with cN=2;m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðN=2Þ −m�½ðN=2Þ −mþ 1�p

, q ¼ 2πn=N, and n ¼ �1;
�2;…;�ðN=2 − 1Þ; N=2. They are eigenstates of the total
spin operator and its projection, Ŝ2jq;mi ¼ N=2ðN=2 −
1Þjq;mi and Ŝzjq;mi ¼ mjq;mi, with −N=2þ 1 ≤ m ≤
N=2 − 1. The spin-wave states can be constructed starting
with the state for maximal projection, jq;m ¼ N=2 − 1i≡
ð1= ffiffiffiffi

N
p ÞPl Ŝ

−
l e

iqj ⊗N
j¼1 j↑ij [83]. Subsequently, applying

the spin lowering operator Ŝ−, the state for any m is given
by jq;mi ∝ ŜN=2−1−m

− jq;m ¼ N=2 − 1i. The spin-wave
states [Eq. (8)] are eigenstates of ĤSE with eigenenergies
Eq ¼ JSEð1 − cos qÞ which do not depend on the spin
projection m due to the spherical symmetry of the SE
Hamiltonian.
The atom-light interaction thus couples themanifold of the

Dicke states jN=2; mi to that of the spin-wave states jq;mi
with q ¼ ϕ. The two manifolds, labeled DN=2 and DN=2−1,
are separated by the energy gap Eϕ ¼ JSEð1 − cosϕÞ. In the
weak atom-light coupling regime, J↑↓ ≪ Eϕ, the energy
mismatch Eϕ suppresses the population transfer between the
twomanifolds. The effect of the spin-wave states on theDicke
states can thus be treated perturbatively. The first nonvanish-
ing correction to an effective Hamiltonian for the Dicke
manifoldDN=2 comes in the secondorderwith respect to Ĥ↑↓,
giving

Ĥð2Þ
eff ¼ ÎN=2Ĥ

↑↓ĜN=2−1Ĥ
↑↓ÎN=2; ð9Þ

where ÎN=2 ¼
P

m jN=2; mihN=2; mj is the unit projection
operator onto the Dicke manifold, while ĜN=2−1 ¼P

q≠0;m½jm; qihm; qj=ð−EqÞ� is an operator which sums
projectors onto the DN=2−1 manifold with the corresponding
energy mismatch denominator −Eq. The Hamiltonian
[Eq. (9)] can be expressed in terms of collective spin operators

by relating its matrix elements hN=2; mjĤð2Þ
eff jN=2; m0i with

the matrix elements of spin operators Ŝ2x and Ŝ
2
z , as explained

in more details in Sec. II of the Supplemental Material [80].

The form of Ĥð2Þ
eff depends on the value of the phase ϕ.

Specifically, one can distinguish two cases: (i) For ϕ ¼ π the
effective Hamiltonian reads as

Ĥð2Þ
eff ¼ −ℏχπŜ2x; with ℏχπ ¼

1

2

J2↑↓
JSE

1

N − 1
; ð10Þ

and (ii) for ϕ ¼ 2πn=N with n ¼ �1;�2;…;�ðN=2 − 1Þ
we obtain

Ĥð2Þ
eff ¼ℏχϕŜ

2
z ; with ℏχϕ¼

1

2ð1− cosϕÞ
J2↑↓
JSE

1

N−1
: ð11Þ

Inboth caseswe omit the constant energy termproportional to

Ŝ2. This shows that Ĥð2Þ
eff has the form of the OAT model in

which the axis of twisting is determined by the value of ϕ
while the direction of twisting is clockwise in Eq. (11) or
counterclockwise in Eq. (10); for numerical demonstrations
see Sec. IVof the Supplemental Material [80]. The depend-
ence on ϕ of the squeezing term will be used to develop a
protocol for simulation of the TACT model. Before that,
however, let us discuss the numerical results and a timescale
for the best spin-squeezing generation.
In Figs. 2(a)–2(d) we present the time evolution of the

spin-squeezing parameter ξ2 for the FHM with the atom-
light coupling [Eq. (1)] and the spin model [Eq. (5)]. The
results are obtained numerically by full many-body calcu-
lations, and compared to the solution of the OAT model for
various values of the phase ϕ. The state is spin squeezed
whenever ξ2 < 1. The level of the best squeezing (the
minimal value of ξ2), as well as the best squeezing time,
achieved by the FHM and the spin model agree with OATas
long as the energy gap is large compared with the strength
of atom-light coupling Eϕ ≫ J↑↓, as required by the
validity of the perturbation theory. The squeezing time
diminishes when lowering the value of ϕ, and it can be
further shortened by optimizing parameters J and U. The
best squeezing and the best squeezing time versus N for
PBC (closed circles) and OBC (open squares) are shown in
Figs. 2(e) and 2(f), respectively. Note, while the overall
level of the best squeezing is similar for PBC and OBC for
various values of N, the timescale for the best squeezing is
shorter for OBC. In the limit of a large number of atoms,
N ≫ 1, the scaling of the best squeezing time with N is
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χϕtbest ≃ N−2=3 [5] implying ERtbest=ℏ ∼ N1=3 for the fixed
value of ϕ, and this tendency is visible in Fig. 2(e).
We have also verified numerically that the unitary

evolution governed by the FHM [Eq. (1)] gives rise to
the existence of an Anderson’s tower of states [45]
corresponding to the Dicke manifold. This strongly indi-
cates that the FHM with the atom-light coupling term
features spin squeezing. It is also worth noting here that our
derivation of Eq. (10) provides a rigorous mathematical
confirmation of the quantum simulator arguments used to
show the equivalence between the OAT and the XXX
model with a staggered field [84].
Simulation of TACT by means of two driving fields.—

Suppose now that our system is affected by two laser beams

producing SFC characterized by two different phases ϕ0 ¼
π and ϕ1 ≠ π. Each beam corresponding to the phase ϕ≡
ϕl (with l ¼ 0, 1) provides the spin-flip term Ĥ↑↓ðϕlÞ with
the amplitude JðlÞ↑↓ ≈ ℏΩðlÞ=2. The full SFC contribution

is then described by the sum of the two terms Ĥ↑↓ ¼
Ĥ↑↓ðϕ0Þ þ Ĥ↑↓ðϕ1Þ. In that case the second order effective
Hamiltonian given by Eq. (9) provides two terms corre-
sponding to contributions by both laser beams

Ĥð2Þ
eff ¼ ℏχϕ1

�
Ŝ2z −

χπ
χϕ1

Ŝ2x

�
; ð12Þ

where we omitted the constant energy shift. In general, the
resulting model [Eq. (12)] represents a nonisotropic TACT.
However, by taking carefully chosen spin-flip amplitudes

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Temporal dependence of the spin-squeezing parameter
ξ2 for the initial state jθ ¼ π=2;φ ¼ π=2i evolved with the FHM
[Eq. (1)] (green dotted lines), the spin Hamiltonian [Eq. (5)]
(orange circles), and the effective OAT model [Eq. (10)] (blue
lines) under PBC for N ¼ 10, J=U ¼ 0.04, JSE ¼ 0.0032ER,
J↑↓=JSE ¼ 0.04 (for U ¼ 0.5ER, J ¼ 0.02ER where ER ¼
ℏ2ð2πÞ2=ð2mλ2lattÞ is the recoil energy), and (a) ϕ ¼ π=5,
J↑↓=Eϕ ≈ 0.21, (b) ϕ ¼ 2π=5, J↑↓=Eϕ ≈ 0.06, (c) ϕ ¼ 3π=5,
J↑↓=Eϕ ≈ 0.03, and (d) ϕ ¼ 4π=5, J↑↓=Eϕ ≈ 0.02. The results
for the OBC are shown for the same parameters with the FHM
(red squares) and the spin Hamiltonian (violet dashed lines). The
panels (e) and (f) represent the best squeezing ξ2best and the best
squeezing time tbest, respectively, versus the number of atoms N
for the spin (orange circles) and OAT (blue line) models for
ϕ ¼ π þ 2π=N. Results for the OBC (red squares) are shown for
comparison.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Spin-squeezing parameter ξ2 in time when the system is
coupled by two laser beams to simulate TACT from the initial
state jθ ¼ π=2;φ ¼ π=2i. The evolution with the FHM [Eq. (1)]
(marked by green squares), the spin Hamiltonian [Eq. (5)]
(orange circles), and the effective TACT model [Eq. (12)] (blue

line) under PBC is shown for ϕ0 ¼ π, Jð1Þ↑↓=JSE ¼ 0.04, and
(a) ϕ1 ¼ π=5, (b) ϕ1 ¼ 2π=5, (c) ϕ1 ¼ 3π=5, and (d) ϕ1 ¼ 4π=5.
The results for OBC are shown for the same parameters using the
FHM (red squares) and the spin Hamiltonian (violet dashed
lines). The best squeezing ξ2best (e) and the best squeezing time
tbest (f) are shown versus the number of atoms N for the spin
(orange circles for PBC and red squares for OBC) and TACT
(blue line) models for ϕ1 ¼ π þ 2π=N. Other parameters are the
same as in Fig. 2.
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Jð0Þ↑↓ ¼ Jð1Þ↑↓=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðϕ1Þ

p
, one has χπ ¼ χϕ1

, leading to the
pure TACT model.
In Figs. 3(a)–3(d) we show the spin-squeezing dynamics

with the FHM including the two atom-light coupling fields.
The dynamics is seen to successfully simulate the TACT
model for PBC. The use of OBC also supports the TACT
generation, with a lower level of squeezing but a faster
best squeezing time, as illustrated in Figs. 3(e) and 3(f). In
the limit of a large number of atoms, the scaling of the
best squeezing time for the TACT model is χϕ1

tbest ∼
N−1 logð2NÞ [58] and for fixed ϕ gives in our case
tbest ∼ logð2NÞ.
Conclusions.—We considered Ramsey-type spectro-

scopy in the atomic Fermi-Hubbard model with the
position-dependent atom-light coupling. We showed that
the FHM and the corresponding Heisenberg spin model
generate the same dynamics as the OAT and TACT in the
weakly coupling regime. Such a regime corresponds to the
system in a Mott insulating phase with sufficiently weak
atom-light coupling which maintains single-site occupation
at half filling and ensures that the generation of spin
squeezing is protected by the energy gap Eϕ. Our analytical
results are confirmed by the full many-body numerical
simulations. The scheme is suitable for preparation of spin
squeezed, many-body entangled and Bell correlated states
[21,22] for state-of-the-art optical lattice clocks using either
optical lattices [72] or tweezer arrays [74], a key resource
for future quantum technologies.
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Spin squeezing protocols successfully generate entangled many-body quantum states, the key pillars of the
second quantum revolution. In our recent work [Phys. Rev. Lett. 129, 090403 (2022)] we showed that spin
squeezing described by the one-axis twisting model can be generated in the Heisenberg spin-1/2 chain with
periodic boundary conditions when accompanied by a position-dependent spin-flip coupling induced by a single
laser field. In this work, we show analytically that the change in boundary conditions from the periodic to the
open ones significantly modifies spin squeezing dynamics. A broad family of twisting models can be simulated
by the system in the weak-coupling regime, including one- and two-axis twisting under specific conditions,
providing the Heisenberg level of squeezing and acceleration of the dynamics. Our analytical findings are
confirmed by full numerical simulations.

DOI: 10.1103/PhysRevB.108.104301

I. INTRODUCTION

Neutral atom arrays have recently emerged as promising
platforms for realizing programmable quantum systems [1–3].
Based on individually trapped cold atoms in optical lattices
[4] and tweezers with strong interactions between Rydberg
states [5], atom arrays have been utilized to explore physics
involving Hubbard and Heisenberg models [6–10]. It has
been shown that indistinguishable Hubbard bosons serve as
a platform for the generation and storage of metrologically
useful many-body quantum states [11–15]. In some regime
of parameters, arrays of ultracold atoms simulate chains of
distinguishable spins (qubits) which are perfectly suitable
for quantum information tasks and the generation of mas-
sive nonclassical correlations, including Bell correlations and
nonlocality [16–19]. These quantum many-body systems are
crucial resources for emerging quantum technologies [20,21].

Systems composed of ultracold fermions in optical lat-
tices are also attracting a lot of attention currently in the
context of the generation of nonclassical states (see, e.g.,
[22–24]). In particular, in our recent work [25], we showed
that in a lattice of strongly interacting ultracold fermionic
atoms involving two internal states, it is possible to gener-
ate nonclassical correlations when adding position-dependent
atom-light coupling. The Fermi-Hubbard model describing
the system under periodic boundary conditions (PBCs) can
be cast onto an isotropic spin-1/2 Heisenberg chain in a deep
Mott regime, while the atom-light coupling can be considered
a position-dependent spin flipping. To generate spin squeezing
the Ramsey-type spectroscopy scheme is considered [25], as
illustrated in Fig. 1. As soon as the atoms are put in a coherent
superposition of two internal states by an electromagnetic
pulse, an additional weak atom-laser coupling is turned on.
This coupling activates the general mechanism in the PBC

case: it induces excitation of a pair of spin waves with oppo-
site quasimomenta. These spin waves extend over the entire
system, allowing individual atoms to interact “effectively”
and establish nontrivial quantum correlations [22,23,25–27].
When the desired level of spin squeezing is established, the
spin-flip coupling is turned off, but the quantum correlations
survive and are stored deep in the Mott insulating phase. We

(a)

(b)

(c)
OFF

ON

FIG. 1. Illustration of the Ramsey-type spectroscopy scheme.
(a) Preparation of the initial spin coherent state. (b) The excitation
of spin-wave states (different colored lines) by the spin-flip cou-
pling serves as an intermediate state to induce “effective” interaction
and establish correlations between elementary spins. (c) Turning
off the coupling freezes the dynamics, and the spin-squeezed states
are stored in the Mott insulating phase. (b) and (c) illustrate an
example of a configuration of spins. Yet the resulting state during
and at the end of evolution is a superposition of various possible
configurations, including the initial one presented in (a).
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showed that an isotropic Heisenberg spin-1/2 chain with weak
position-dependent spin-flip coupling generates spin squeez-
ing dynamics given by the one-axis twisting (OAT) model.
Furthermore, we numerically observed that open boundary
conditions (OBCs) change the spin squeezing dynamics.
Depending on the coupling parameters, an acceleration of
squeezing generation was observed with the same or a similar
level of squeezing [25].

In this paper, we provide a detailed analytical and
numerical analysis of the impact of OBCs on the spin
squeezing dynamics in Heisenberg spin chains. To this end,
we develop a spin-wave theory for OBCs by modifying the
coordinate Bethe ansatz [28]. Next, by using the Schrieffer-
Wolf transformation [23,29–32] we derive the effective model
in terms of collective spin operators to describe the squeezing
dynamics generated in the weak-coupling regime. For OBCs
the coupling leads to the excitation of a superposition of spin
waves with different energies and amplitudes rather than a
pair of spin waves with opposite quasimomenta, as is the case
for PBCs. This still allows individual atoms to correlate and
generate squeezing. However, the excitation of a superposition
of spin waves complicates the form of the effective model. We
analyze this unconventional model in detail, identifying the
initial conditions and the coupling parameters for spin squeez-
ing generation with the level given by the OAT and two-axis
countertwisting (TACT) models [25,33,34]. Consequently,
we show that it is possible to generate a Heisenberg level
of squeezing in spin-1/2 Heisenberg chains under OBCs. In
addition, we show that the corresponding timescale of the best
squeezing is reduced with respect to PBCs while keeping the
same perturbation level. Our analytical findings are confirmed
by full numerical simulations. The results obtained can be
used in current state-of-the-art experiments with ultracold
atoms in optical lattices [35–37] and tweezer arrays [38,39].

II. HEISENBERG MODEL AND SPIN-WAVE
STATES FOR OBCs

Let us concentrate on a specific physical system composed
of a total even number N of fermionic ultracold atoms loaded
into a one-dimensional optical lattice potential with N sites.
Each atom has two internal states, |↑〉 and |↓〉, corresponding
to a spin-1/2 degree of freedom. The atoms are assumed
to occupy the lowest Bloch band, interact through s-wave
collisions, and hence can be described by the Fermi-Hubbard
model.

We assume the interaction dominates over the tunneling
and the system is in the Mott insulating phase at half fill-
ing when double occupancy of a single site is energetically
unfavorable. The second-order processes, obtained with a
projection onto the manifold of single occupancy of lattice
sites, lead to the nearest-neighbor spin-exchange interac-
tions [23,23,25,29–32]. The spin dynamics of this system is
well captured by the isotropic Heisenberg (spin-exchange)
model [40,41],

ĤSE = JSE

N−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 − 1

4

)
, (1)

where JSE represents the spin-exchange energy; Ŝ+
j =

â†
j,↑â j,↓, Ŝ−

j = â†
j,↓â j,↑, Ŝ±

j = Ŝx
j ± iŜy

j , and Ŝz
j = (n̂ j,↑ −

n̂ j,↓)/2 are on-site spin operators; and we take h̄ = 1. The
fermionic operators â j,s annihilate an atom in the jth lattice
site in the state s ∈ {↑,↓}, and n̂ j,s = â†

j,sâ j,s is the corre-
sponding on-site operator of the number of atoms. We also
introduce the collective spin operators Ŝσ = ∑

j Ŝσ
j , with σ =

x, y, z,±. The analytical form of the energy spectrum of the
Hamiltonian (1) and corresponding eigenstates for PBCs are
known from 1931 due to the famous work of Bethe [28]. Their
counterpart for OBCs is less explored, to our knowledge.

The Hamiltonian (1) is spherically symmetric with respect
to spin rotation. Thus, eigenstates of ĤSE can also be taken to
be eigenstates of the square of the total spin Ŝ2 = Ŝ2

x + Ŝ2
y +

Ŝ2
z and its z projection Ŝz with eigenvalues S(S + 1) and m,

respectively. To understand the spin squeezing dynamics let
us first recall the analytical form of two energy manifolds of
ĤSE characterized by the largest values of the total spin.

The first energy manifold corresponding to the total spin
quantum number S = N/2 is spanned by Dicke states |m〉 ≡
|N/2, m〉, which are zero-energy eigenstates of ĤSE. They
can be represented in terms of the all-spin-up state affected
N/2 − m times by the collective spin lowering operator Ŝ−:

|m〉 =
√

(N/2 + m)!

(N/2 − m)!(N )!
ŜN/2−m

−
N⊗

j=1

|↑〉 j, (2)

where the quantization axis is chosen to be along the z direc-
tion: Ŝz

j |↑〉 j = 1/2|↑〉 j and Ŝz
j |↓〉 j = −1/2|↓〉 j . Alternatively,

the Dicke states |m〉 can be defined by using the rising op-
erator Ŝ+ ≡ (Ŝ−)† in the place of Ŝ− when replacing m and
|↑〉 j with −m and |↓〉 j , respectively, on the right-hand side
of (2). The Dicke states are eigenstates of ĤSE with zero
eigenenergies for both PBCs and OBCs. Altogether, there
are N + 1 Dicke states corresponding to different values of
m ∈ (−N/2,−N/2 + 1, . . . , N/2).

The second energy manifold to be considered is spanned
by the spin-wave states [23,25,42,43] containing one spin
excitation and characterized by the total spin quantum number
S = N/2 − 1. In the case of OBCs one can analytically solve
the eigenproblem of these states for the Hamiltonian (1) by
using the coordinate Bethe ansatz modified appropriately to
account for the difference arising from the two boundary
points; see Appendix A for a derivation. This leads to the
following form of the spin-wave states:

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉, (3)

where

cN/2,±m =
√

N − 1

(N/2 ∓ m)(N/2 ∓ m + 1)
. (4)

The sign ± in Eq. (3) for |m, q〉 corresponds to two equivalent
definitions of the spin waves in terms of the on-site spin
raising and lowering operators Ŝ±

j acting on the Dicke states.
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Furthermore, the coefficients featured in Eq. (3) are

p(q)
j =

√
2

N
cos

[
π

N

(
j − 1

2

)
q

]
. (5)

Altogether, there are (N − 1)2 different spin-wave states cor-
responding to various combinations of quantum numbers
m ∈ (−N/2 + 1,−N/2 + 2, . . . , N/2 − 1) and q = 1, 2, . . . ,

N − 1. The corresponding eigenenergies Eq do not depend on
the spin projection quantum number m and read

Eq = JSE

[
cos

(
π

N
q

)
− 1

]
. (6)

Note that for OBCs the amplitudes p(q)
j given by Eq. (5) rep-

resent standing waves. They thus differ from the solution for
PBCs, where the amplitudes p(q)

j = N−1/2ei2πq j/N are plane
waves [43]. This has substantial consequences for the cou-
pling mechanism and the spin squeezing dynamics analyzed
in Secs. IV and V.

III. PROTOCOL FOR DYNAMICAL GENERATION
OF SPIN SQUEEZING

In order to generate spin squeezing in this Heisenberg spin-
1/2 chain with OBCs described by Hamiltonian (1) we add
an atom-light coupling which induces position-dependent spin
flipping. The resulting system Hamiltonian Ĥspin reads

Ĥspin = ĤSE + Ĥ↑↓, (7)

Ĥ↑↓ = �

2

N∑
j=1

(ei(φ j−φ0 )Ŝ+
j + e−i(φ j−φ0 )Ŝ−

j ), (8)

where the extra term Ĥ↑↓ represents the sum over the on-site
spin-flip coupling with amplitude � and position-dependent
phase φ j, where φ = π cos(α)λlatt/λL can be tuned by prop-
erly choosing an angle α between laser beams producing the
optical lattice and the direction of the laser field inducing the
coupling. The two beams are characterized by the wavelengths
λlatt and λL, respectively (see, e.g., [25]). Here, φ0 ∈ [0, 2π )
is the global offset phase of the coupling lasers, which can
be interpreted as the transformation of Ĥ↑↓ due to the global
spin rotation around the z axis by the angle φ0. Equivalently, it
can also be interpreted as the spin rotation for the initial state
around the same z axis and by the same angle φ0, but in the
opposite direction.

In the case of PBCs, the coupling phase φ should
be commensurate with 2π/N , namely, φ = 2πn/N , where
n = 1, 2, . . . , N − 1, to ensure the periodicity of Ĥ↑↓ [25].
Here, however, we are interested in OBCs, and therefore, φ

can take any real values apart from the trivial one φ = 0 or
φ = 2π , for which Ĥ↑↓ does not provide coupling between
the Dicke and spin-wave state manifolds needed for the gen-
eration of spin squeezing.

The initial state that is convenient to start the evolution is
the spin coherent state

|θ, ϕ〉 = e−iŜzϕe−iŜyθ

N⊗
j=1

|↑〉 j, (9)

where all the spins point in the same direction parameterized
by the spherical angles θ and ϕ. In general, the spin coher-

ent state (9) belongs to the Dicke manifold of the total spin
S = N/2 and hence can be expressed in the basis of the Dicke
states (2) as

|θ, ϕ〉 =
N/2∑

m=−N/2

am|m〉, (10)

where

am =
√(

N
N
2 + m

)
cos

N
2 +m

(
θ

2

)
sin

N
2 −m

(
θ

2

)
ei( N

2 −m)ϕ (11)

are coefficients of decomposition.
The subsequent evolution of the initial state is defined

by the unitary operator Û = e−it Ĥspin . To quantify the level
of squeezing generated in time we use the spin squeezing
parameter

ξ 2 = N (�Ŝ⊥)2
min

〈Ŝ〉2
, (12)

where the length of the mean collective spin is 〈Ŝ〉 and the
minimal variance of the collective spin orthogonal to its di-
rection is (�Ŝ⊥)2

min [44].
Nontrivial quantum correlations are produced in the weak-

coupling regime, where the characteristic energy of the
coupling Hamiltonian Ĥ↑↓ is smaller than that of the spin-
exchange term ĤSE. In the next section, we derive the effective
model describing the spin squeezing dynamics in terms of
collective spin operators.

IV. EFFECTIVE MODEL

When the spin-flip coupling is weak compared to the en-
ergy of the spin exchange, the dynamics of the initial spin
coherent state |θ, ϕ〉 governed by the spin Hamiltonian Ĥspin

within the Dicke manifold can be well approximated using
perturbation theory. Therefore, the coupling term Ĥ↑↓ can be
treated as a perturbation. For reasons that will be explained
later, let us rephrase this operator in the following way:

Ĥ↑↓ = ˆ̃H↑↓ + vxŜx + vyŜy, (13)

where

ˆ̃H↑↓ = �

2

N∑
j=1

(α+
j Ŝ+

j + α−
j Ŝ−

j ). (14)

Here, α±
j = e±i(φ j−φ0 ) − A±, with A± = 1

N

∑
j e±i(φ j−φ0 ), and

vx = �Re[A+]/2, and vy = −�Im[A+]/2. The separation of
the two last terms in (13) is made in such a way that α±

j sum
up to zero. Note that vx and vy are nonzero only for phases φ

incommensurate with 2π/N .

A. First- and second-order contributions

The operator ˆ̃H↑↓ on the right-hand side of (13) induces the
coupling between the Dicke and spin-wave state manifolds,
while the remaining ones directly couple the Dicke states and
represent the first-order perturbation term

Ĥ (1)
eff = vxŜx + vyŜy. (15)
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To generate spin squeezing one needs to take into ac-
count the second-order contribution induced by ˆ̃H↑↓. It
can be obtained via the Schrieffer-Wolf transformation
[23,23,25,29–32], leading to

Ĥ (2)
eff = ÎN/2

ˆ̃H↑↓ĜN/2−1
ˆ̃H↑↓ ÎN/2, (16)

where ÎN/2 = ∑
m |m〉〈m| is the unit operator for projection

onto the Dicke manifold and ĜN/2−1 = ∑
q �=0,m

|m,q〉〈m,q|
−Eq

is an
operator which sums projectors onto the spin-wave state man-
ifold with the corresponding energy mismatch denominator
−Eq. The matrix elements of (16) are

〈m′|Ĥ (2)
eff |m〉 = −

∑
m′′,q

〈m′| ˆ̃H↑↓|m′′, q〉〈m′′, q| ˆ̃H↑↓|m〉
Eq

. (17)

The details of the transformation and its application to the
Heisenberg spin-1/2 chain with spin-flip coupling can be
found in the Supplemental Material of Ref. [25]. In the follow-
ing, we focus on the derivation of the effective Hamiltonian
Ĥ (2)

eff and its representation in terms of the collective spin
operators.

Let us start by expressing the action of ˆ̃H↑↓ on Dicke states,
namely,

ˆ̃H↑↓|m〉 = �

2
|�, m + 1〉+ + �

2
|�, m − 1〉−, (18)

where states |�, m ± 1〉± = ∑
j α

±
j Ŝ±

j |m〉 can be expanded in
terms of the spin-wave states |m ± 1, q〉 as

|�, m ± 1〉± =
√

NcN/2,±m+1

∑
q

f ±
q |m ± 1, q〉. (19)

Here, cN/2,±m+1 are given by Eq. (4), and

f ±
q =

∑
j

p(q)
j α±

j =
∑

j

p(q)
j e±i(φ j−φ0 ), (20)

with f +
q = ( f −

q )∗ because p(q)
j is real. Note that the spin-flip

term ˆ̃H↑↓ couples each Dicke state |m〉 with a superposition
of spin-wave states (19) characterized by energies Eq. This is
different from the PBC case, where Ĥ↑↓ couples each Dicke
state with a pair of spin-wave states of well-defined quan-
tum numbers q = ±φN/(2π ) set by the coupling phase φ

[25]. An example of the amplitude of elementary couplings
f +
q to the |m, q〉 states is presented in Fig. 2. We can see

that, indeed, the coupling could be non-negligible even to the
lowest state |m, q = 1〉. Therefore, the perturbative regime is
defined by the smallest energy gap, namely, � � |Eq=1| =
JSE| cos(π/N ) − 1|.

The relevant matrix elements of the second-order contribu-
tion can be written as

〈m′′, q| ˆ̃H↑↓|m〉 = �

2
N−1/2c−1

N/2,m+1 f +
q δm′′,m+1

+ �

2
N−1/2c−1

N/2,−m+1 f −
q δm′′,m−1, (21)

where the coefficients N−1/2c−1
N/2,±m+1 come from the scalar

product between the Dicke state |m〉 and states |�, m ± 1〉±.

0 1 2 3 4 5 6 7 8

φN/(2π)

1

2

3

4

5

6

7

0.0

0.2

0.4

0.6

0.8

FIG. 2. The absolute values of the normalized coefficients
| f +

q |N−1/2 are shown by color versus the coupling phase φ ∈ R
and the spin-wave quantum number q ∈ Z for an arbitrary φ0 when
N = 8.

The nonzero matrix elements of the second-order term (17),
namely, Hm′,m = 〈m′|Ĥ (2)

eff |m〉, read

Hm,m = −(
c−2

N/2,m + c−2
N/2,−m

)
(N − 1)χz, (22)

Hm,m−2 = c−1
N/2,m−1c−1

N/2,−(m−1) (N − 1)χx, (23)

Hm,m+2 = c−1
N/2,m+1c−1

N/2,−(m+1) (N − 1)χx, (24)

where

χz = �2

4NJSE(N − 1)

N−1∑
q=1

f +
q f −

q

cos
(

π
N q

) − 1
, (25)

χx = �2

4NJSE(N − 1)

N−1∑
q=1

( f −
q )2

cos
(

π
N q

) − 1
. (26)

Comparing the matrix elements presented in Eqs. (22)–(24)
with the matrix elements of the appropriate collective spin
operators, the second-order perturbation contribution can be
represented in operator form as

Ĥ (2)
eff = −2χz

(
Ŝ2 + Ŝ2

z

) + Re[χx](Ŝ2
+ + Ŝ2

−)

+ iIm[χx](Ŝ2
+ − Ŝ2

−), (27)

as explained in Appendix B. The full effective Hamiltonian is
a sum of the first- and second-order contributions:

Ĥ (φ0 )
eff = Ĥ (1)

eff + Ĥ (2)
eff . (28)

B. Choosing the offset phase φ0 = φ(N + 1)/2

In what follows, we will take the value of the global
coupling phase to be φ0 = φ(N + 1)/2, so that vy entering
Eqs. (13) and (15) and the imaginary part of χx vanish, i.e.,
vy = Im[χx] = 0 (see Appendix C). This simplifies the form
of the effective model, leading to

Ĥ (φ0 )
eff = −2χz

(
Ŝ2 + Ŝ2

z − ηŜ2
x + ηŜ2

y + γ Ŝx
)
, (29)
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FIG. 3. The parameters η (top panel) and γ (bottom panel) of the
effective model (29) versus the coupling phase φ are marked by black
and orange lines, respectively, for N = 8, � = |Eq=1|/10, and φ0 =
φ(N + 1)/2. The values of η and γ for commensurate phases are
marked by open circles. The regions shaded in blue present examples
when η < 0, while the one shaded in red shows an example when
η > 0.

where η = χx/χz and γ = vx/χz. This specific choice of
phase φ0 does not involve a loss of generality because the
full effective Hamiltonian (28) containing Ĥ (1)

eff and Ĥ (2)
eff in

Eqs. (15) and (27) is related to that given by Eq. (29) via a
unitary transformation set by the global rotation around the z
axis through the angle φ0.

In Fig. 3 we show the variation of the two parameters
of the effective model (29), namely, η and γ , versus φ.
The commensurate phases corresponding to φ = 2πn/N , with
n ∈ [1, N − 1], are marked by open points in Fig. 3, for which
we have γ = 0. In this case, we numerically observe that
η = −1/2 for φ �= π and η = −1 for φ = π . In addition, we
have also analytically found that

χz = − �2

4JSE(N − 1)

2

cos(φ) − 1
, (30)

χx = �2

4JSE(N − 1)

1

cos(φ) − 1
(31)

for commensurate phases φ = 2πn/N , apart from φ = π ,
where

χz = −χx = − �2

4JSE(N − 1)
. (32)

The derivation is presented in Appendix E. The noncommen-
surate coupling phases φ result in both positive and negative
values of the parameter η, which is independent of JSE, �, and
N . On the contrary, the coefficient γ depends on the system
parameters and scales as γ ∝ NJSE/�.

In this way, we derive the second-order contribution
(27) and, consequently, the effective model (29), showing
that the boundaries significantly modify the spin squeezing

Hamiltonian with respect to PBCs, in which one arrives at
the effective Hamiltonian in the form of the OAT model,
namely, Ĥeff = −χπ Ŝ2

x for φ = π and Ĥeff = χφ Ŝ2
z for φ �= π

[25]. Therefore, it is not only the timescale that is changed
due to the OBCs but the entire dynamics as well. This is
a counterintuitive result because, usually, the PBC describes
well the system in the limit of large N .

V. SPIN SQUEEZING FOR OBCs

In this section, we analyze the unitary evolution of the
spin squeezing parameter governed by the effective spin
Hamiltonian (29). We distinguish two cases depending on the
commensurability of the coupling phase φ. We demonstrate
that if the coupling phase is commensurate, the resulting
model (29) can be either OAT for φ = π or nonisotropic
TACT for φ �= π . However, the most general case of non-
commensurate phases gives rise to a squeezing dynamics
not simulated by the conventional OAT and TACT twisting
models.

A. Spin squeezing with commensurate phase

Tuning the value of the coupling phase φ to the integer
multiple of 2π/N simplifies the problem. In particular, by
taking φ = π we have η = −1, and the effective Hamiltonian
(29) acquires the form of the OAT one, namely,

Ĥeff = 4χzŜ
2
y , (33)

where we omitted a term proportional to Ŝ2, as it only shifts
the origin of energy. The convenient initial spin coherent states
are the ones polarized in the x-z plane, namely, |θ, ϕ = 0〉 for
any θ . The best level of squeezing ξ 2

best ≈ N−2/3 is achievable
for times tbest ≈ N−2/3|4χz|−1 in the large-N limit according
to the OAT dynamics [33,45]. Next, taking the analytical ex-
pression (32) for χz, we obtain tbest ≈ N1/3JSE/�2. Therefore,
the twisting dynamics is essentially the same as for PBCs [25].
The only difference is that for OBCs the resulting timescale
is four times shorter than in the PBC case for the same per-
turbation level �. Acceleration of the best squeezing time
takes place because of a broader range of amplitudes p(q)

j
contributing to the generation of spin squeezing.

In another situation, when the coupling phase is not equal
to π , we have η = −1/2, and γ = 0, so the effective Hamil-
tonian (29) reduces to

Ĥeff = 2χz
(
Ŝ2

y − Ŝ2
z

/
2
)
, (34)

where we omitted the term proportional to Ŝ2. Equation (34)
represents the anisotropic TACT with the anisotropy equal
to 1/2. It is worth stressing here that the OBC provides
anisotropic TACT without adding an extra atom-light cou-
pling characterized by two different phases. In the case
of the PBC it was necessary to include two spin-flipping
terms in order to simulate TACT [25]. Let us again con-
sider the initial state for spin squeezing generation to be the
spin coherent state polarized in the x-z plane, |θ, ϕ = 0〉.
The anisotropic TACT given by (34) generates the Heisen-
berg limited level of squeezing ξ 2

best ≈ N−1 on the timescale
tbest ≈ (2χzN

√
2)−1 ln(N/2) [12]. Therefore, taking into ac-

count the system parameters and the relation for χz given
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FIG. 4. Variation of spin squeezing parameter (12) in time for
different values of � when the initial state is |θ = π/2, ϕ = 0〉,
N = 8, φ = π − 2π/N , and φ0 = φ(N + 1)/2. The result for the
effective model (29) is marked by olive crosses, while results for
the coupled Heisenberg model (7) are shown by black lines for � =
|Eq=1|/10 (solid), � = |Eq=1| (dashed)m and � = 2|Eq=1| (dotted).

by (30), we have tbest ≈ JSEln(N/2)| cos φ − 1|/(
√

2�2). In
Fig. 4 we show examples of spin squeezing dynamics for dif-
ferent values of � obtained from exact many-body numerical
simulations, using single occupied Fock states, of the spin-
exchange model ĤSE with coupling Ĥ↑↓. Perfect agreement
with the effective model (29) is observed in the perturbative
regime when � � |Eq=1|. Significant spin squeezing can also
be generated beyond this regime, yet large discrepancies arise
with respect to the TACT dynamics.

It is also worth commenting here on the importance of
the coupling strength � and phase φ to the best squeezing
time. Due to the perturbation regime condition, � scales as
∼N−2. This leads to a very long squeezing time, in principle.
However, dependence on φ, which is hidden in the function
χz, leads to a twofold modification of the time scaling. For
φ close to 0 or 2π the timescale is reduced by N−2. On the
other hand, φ ∼ π does not provide an improvement directly,
but the coupling to the lowest spin-wave states is smaller,
increasing the perturbation regime condition and allowing it
to increase the value of �. In Fig. 5 we plot the variation of the
best squeezing time with the phase φ for a fixed value of the
total number of spins N = 100 obtained from the numerical
simulations of the effective two-mode model (29). We can
see the timescale increases by orders of magnitude for values
of the coupling phase from φ = 2π/N to φ = π and then
decreases symmetrically to φ = 2π (N − 1)/N . Thus, in prac-
tical applications, the optimization of the system parameters
JSE, �, and φ will be necessary to have the shortest possible
timescale.

B. Spin squeezing with noncommensurate phases

The resulting effective model (29) simulated by the cou-
pled Heisenberg model (7) also gives rise to the spin
squeezing generation for noncommensurate coupling phases
φ, i.e., the one which is not equal to integer multiplications of
2π/N . In general, the results depend strongly on the chosen
initial spin coherent state |θ, ϕ〉 and parameters η and γ .

0 20 40 60 80 100

φN/(2π)

10−2

10−1

100

t b
e
st

Ω
2
/
J

S
E

FIG. 5. The best squeezing time tbest multiplied by �2/JSE for
N = 100 to isolate the dependence on the coupling phase φ. The
numerically evaluated values of the best squeezing time using unitary
evolution according to (29) are shown by red points. The correspond-
ing behavior tbest�

2/JSE = ln(N/2)| cos φ − 1|/(
√

2) for φ �= π and
φ0 = φ(N + 1)/2 is shown with by the solid gray line; see text for
more details.

Let us discuss the situation when the initial spin coherent
state is polarized along the z axis: |0, 0〉 = ⊗N

j=1 |↑〉 j . Exam-
ples of the best squeezing and the best squeezing times are
shown in Figs. 6(a)–6(d) for N = 100 from the full numerical
simulations of the effective model (29) using Dicke states
basis (2). A characteristic behavior is the OAT level of best
squeezing for positive values of η, which is demonstrated in
Fig. 6(b). In other cases, when η is negative, the OAT level is
also achieved mainly with η close to zero [see, e.g., Figs. 6(c)
and 6(d)]. It is possible to exceed the OAT level of squeezing
when η approaches the local minimum [see Figs. 6(a), 6(c)
and 6(d)]. Interestingly, the last term in the effective model
(29), namely, γ Ŝx, does not dominate the dynamics even if γ

is orders of magnitude larger than η. In Appendix D we show
the corresponding results for two different initial states. The
OAT level of squeezing can be achieved when the initial state
is polarized along the y axis, |θ = π/2, ϕ = π/2〉. The best
squeezing and times are of the same level as the ones pre-
sented in Fig. 6. On the other hand, if the evolution starts with
the state polarized along the x axis, |θ = π/2, ϕ = 0〉, the
dominant Zeeman-like term γ Ŝx in (29) freezes the dynamics
of the spin state, and only weak spin squeezing is generated
for noncommensurate phases.

VI. CONCLUSIONS AND SUMMARY

We studied in detail the effect of OBCs on the generation of
spin squeezing in one-dimensional isotropic Heisenberg spin-
1/2 chains induced by position-dependent spin-flip coupling
with the offset phase φ0 (8). We extended the spin-wave theory
for the case of OBCs using the coordinate Bethe ansatz. We
analytically derived the effective model in terms of the col-
lective spin operators which describe the squeezing dynamics
in the weak-coupling regime. The resulting effective model
obtained differs significantly from the one under PBCs and
therefore provides an example in which the boundaries sig-
nificantly modify the dynamics of the system. To classify the
squeezing scenarios, we distinguished two cases depending
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FIG. 6. The best squeezing ξ 2
best (green points) and the best squeezing time tbest (red points) are shown in (a)–(d) for different regions of φ.

The numerical results for the effective model (29) with N = 100, JSE = 1, � = |Eq=1|/10, φ0 = φ(N + 1)/2, and η > 0 (red shaded areas) or
η < 0 (blue shaded areas). The numerical values of η and γ used in the simulations are shown in the top panels. The two limit cases for the
values of ξ 2

best , namely, OAT and TACT for N = 100, are marked by horizontal green dotted and dashed lines, respectively.

on the commensurability of the coupling phase φ for a well-
defined offset phase φ0 = φ(N + 1)/2. When the coupling
phase is commensurate, the dynamics of spin squeezing is
well captured by the nonisotropic TACT if φ �= π and OAT
for φ = π . The most general case of the noncommensurate
phase φ and arbitrary offset phase φ0 still gives rise to the
simulation of a squeezing model, although not a conventional
one. This is in contrast to the PBC case, where the OAT model
is simulated by the system independently of φ. Our analytical
predictions were confirmed by the full many-body numerical
simulations.

The results presented here show how to produce entan-
gled states in the isotropic spin-1/2 Heisenberg chains with
nearest-neighbor interactions. This is possible through the
addition of the position-dependent spin-flip coupling that is
weak enough to maintain the dynamics within the Dicke man-
ifold and strong enough to excite spin waves that are extended
over the entire system, allowing effective all-to-all interaction
between the individual spins. It is also worth adding that the
dynamics of generated spin-squeezed states can be frozen
at a desired time just by turning off the spin-flipping term.
The results obtained can be verified experimentally by current
state-of-the-art experiments with ultracold atoms.
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APPENDIX A: SPIN-WAVE STATES FOR OBCs

In this Appendix, we are interested in spin-wave states
which are eigenstates of the isotropic Heisenberg model,

ĤSE = JSE

N−1∑
j=1

(
Sz

jS
z
j+1 + Sy

j S
y
j+1 + Sx

j S
x
j+1 − 1

4

)
, (A1)

for N spins and open boundary conditions. In the following,
we will show that the spin-wave states are given by Eq. (3) of
the main text, namely,

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉. (A2)

In the above equation, the states |m ∓ 1〉 are Dicke states,
while the usage of the on-site rising and lowering operators Ŝ±

j
corresponds to the two ways to define spin-wave states. Note

that Sz|m, q〉 = m|m, q〉, as each term comprising the state
vector (A2) is characterized by the same spin projection m.
Furthermore, Ŝ2|m, q〉 = S(S + 1)|m, q〉, with S = N/2 − 1.
To see this we notice that the states (A2) are constructed in
such a way that

|m, q〉 ∝ ŜN/2−1±m
± |q〉±, (A3)

where the state vector |q〉± ≡ | ∓ (N/2 − 1), q〉 corresponds
to the minimum and maximum values of the spin projection
m = ∓(N/2 − 1). Since [Ŝ2, Ŝ±] = 0,

Ŝ2|m, q〉 ∝ ŜN/2−1±m
± Ŝ2|q〉±. (A4)

Therefore, one needs to find the action of the operator Ŝ2 on
the state vector |q〉±, which is

Ŝ2|q〉± = (
Ŝ2

z + Ŝz + Ŝ−Ŝ+
)|q〉±

=
[(

N

2

)2

− N

2

]
|q〉± +

⎛
⎝∑

j

p(q)
j

⎞
⎠Ŝ±|N/2,∓N/2〉.

(A5)

One can see that the state vectors |q〉± are eigenstates of the
Ŝ2 operator with the spin quantum number S = N/2 − 1 if
the last term in (A5) is zero, i.e.,∑

j

p(q)
j = 0. (A6)

In that case the state vectors |m, q〉 with an arbitrary m are
also the eigenstates of Ŝ2 with quantum number S = N/2 − 1.
Note that the explicit form of the coefficients p(q)

j presented
later in Eq. (A16) does obey the condition (A6).

We are looking for the spin-wave states |m, q〉 which are
eigenstates of the Hamiltonian (A1). Since [ĤSE, Ŝ±] = 0,
using Eq. (A3), one can see that the eigenstates |m, q〉 of
the Hamiltonian ĤSE have eigenenergies Eq which do not
depend on the quantum number m. Therefore, by choosing
the amplitudes p(q)

j in such a way that |q〉± are eigenstates
of the spin-exchange Hamiltonian (A1), the states |m, q〉 for
any magnetization m are also its eigenstates with the same
eigenenergies Eq.

Below we show how to derive the form of p(q)
j for |q〉+

using OBCs. The equations for |q〉− give the same expansion
coefficients p(q)

j and the same eigenenergies Eq. Using the
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coordinate basis vectors

|l̃〉 ≡ Ŝ+
l | − N/2〉 = Ŝ+

l

N⊗
j=1

|↓〉 j, (A7)

the spin-wave states |q〉+ can be represented as

|q〉+ =
N∑

l=1

pl |l̃〉. (A8)

The coefficients pl are evaluated by considering the eigen-
value problem

(H − EI ) �p = 0, (A9)

where I is the identity matrix, �p = (p1, p2, . . . ) and the matrix
elements of H are Hl ′,l = 〈l̃ ′|ĤSE|l̃〉.

The matrix form of eigenproblem (A9) leads to the set of
equations

−JSE

2
p1 + JSE

2
p2 = E p1, (A10)

JSE

2
pl−1 − JSE pl + JSE

2
pl+1 = E pl for l ∈ [2, N − 1],

(A11)

−JSE

2
pN + JSE

2
pN−1 = E pN , (A12)

where (A10) and (A12) are for the boundary sites of the
lattice. We use Puszkarski’s idea [46] and add two virtual
lattice sites p0 and pN+1 subject to the boundary constraints
p0 = p1 and pN+1 = pN . In that case, the set of equa-
tions (A10)–(A12) becomes equivalent to the following set of
bulk equations valid for any l:

JSE

2
pl−1 − JSE pl + JSE

2
pl+1 = E pl . (A13)

The solution to Eq.(A13) can be represented as

pl = p cos [k(l + u)], (A14)

with the corresponding eigenenergies E = JSE(cos k − 1).
The boundary constraint p0 = p1 requires cos(uk) =
cos(uk + k), which is fulfilled for u = −1/2. The second
constraint, pN+1 = pN , leads to the requirement

cos(kN + k + uk) = cos(kN + uk), (A15)

which is fulfilled when k = qπ/N , with q = 1, 2, . . . , N − 1
being an integer. Therefore, we arrive at the required expan-
sion coefficients and the corresponding eigenenergies:

p(q)
l =

√
2

N
cos

[
π

N

(
l − 1

2

)
q

]
, (A16)

Eq = JSE

[
cos

(
π

N
q

)
− 1

]
. (A17)

Note that the value q = 0 is not included here, as in that case,

the coefficients p(q)
l do not depend on l and thus do not obey

the condition (A6). Although such a state with q = 0 is an
eigenstate of the Hamiltonian ĤSE, it belongs to the Dicke
manifold and is characterized by the spin quantum number
S = N/2 and zero eigenenergy.

In Fig. 7 we show a comparison of the numerical solution
of (A10)–(A12) with the analytical results. Perfect agreement
can be seen.

APPENDIX B: MATRIX REPRESENTATION OF SPIN
OPERATORS NEEDED FOR EFFECTIVE MODEL

In the following, we will present the matrix
representation of various spin operators Ŝσ with
σ = z,± by using Ŝ−|S, m〉 = AS,m

− |S, m − 1〉, AS,m
− =√

(S + m)(S − m + 1), Ŝ+|S, m〉 = AS,m
+ |S, m + 1〉, and

AS,m
+ = √

(S − m)(S + m + 1).
The nonzero elements relevant for the relation of the matrix

representation to the corresponding spin operators are

〈N/2, m|Ŝ2
−|N/2, m + 2〉 =

√(
N

2
+ m + 2

)(N

2
− m − 1

)(
N

2
+ m + 1

)(
N

2
− m

)
, (B1)

〈N/2, m|Ŝ2
+|N/2, m − 2〉 =

√(
N

2
+ m

)(
N

2
− m + 1

)(
N

2
+ m − 1

)(
N

2
− m + 2

)
. (B2)

One can show that the right-hand site of Eq. (B1)
equals (N − 1)c−1

N/2,m+1c−1
N/2,−(m+1) and the right-hand side

of Eq. (B2) equals (N − 1)c−1
N/2,m−1c−1

N/2,−(m−1). In addi-

tion, 〈N/2, m|Ŝ2
z |N/2, m〉 = m2, and 〈N/2, m|Ŝ2|N/2, m〉 =

N
2 ( N

2 + 1), while (c−2
N/2,m + c−2

N/2,−m) = 2
N−1 (m2 + N

2 + N2

4 ).

APPENDIX C: EFFECTIVE MODEL AND OFFSET PHASE

The general form of the effective model including the first-
and second-order perturbation terms is

Ĥeff = 2χz
(
Ŝ2 + Ŝ2

z

) − Re[χx](Ŝ2
+ + Ŝ2

−)

− iIm[χx](Ŝ2
+ − Ŝ2

−) + vxŜx + vyŜy, (C1)

which for φ0 = φ(M + 1)/2 leads to (29).
While the general form of the effective Hamiltonian (C1)

includes the mixed term Ŝ2
+ − Ŝ2

− ∝ ŜxŜy + ŜyŜx that compli-
cates the effective model, it can be removed in general by a
proper choice of the global phase factor in the atom-light cou-
pling term. This is done by choosing a phase shift φ0 so that
Im[χx] = 0. In fact, it is sufficient to fulfill Im[( f ±

q )2] = 0 ∀ q
since Im[χx] ∝ ∑

q{Im[( f ±
q )2]/Eq}. By explicitly calculating

f ±
q =

N∑
j=1

p j (q)α±
j =

√
2

N

N∑
j=1

cos

[
π

N
q

(
j − 1

2

)]
ei(φ j−φ0 ),

(C2)
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FIG. 8. The best squeezing ξ 2
best (green points) and the best squeezing time tbest (red points) are shown in (a)–(d) for initial state |θ =

π/2, ϕ = 0〉 and in (e)–(h) for initial state |θ = π/2, ϕ = π/2〉. The numerical results for the effective model (29) with N = 100, JSE = 1,
� = |Eq=1|/10, φ0 = φ(N + 1)/2, and η > 0 (red shaded areas) or η < 0 (blue shaded areas ). The numerical values of η and γ used in the
simulations are shown in the top panels. The two limit cases for the values of ξ 2

best , namely, OAT and TACT for N = 100, are marked by
horizontal green dotted and dashed lines, respectively.

using the geometric series result

N∑
j=1

r j =
{

1−rN

r−1−r if r �= 1,

N if r = 1,
(C3)

we obtain

f ±
q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ei( φ
2 −φ0 )√

2

[
e−iπ( q

2 − Nφ
2π )

N g(q,−φ)

+ eiπ( q
2 + Nφ

2π )
N g(q, φ)

]
if φ �= ± π

N q,

ei( φ
2 −φ0 )√

2
if φ = ± π

N q,

(C4)

where g(q, φ) = sin π ( q
2 + Nφ

2π
)

sin π
N ( q

2 + Nφ

2π
)
. This can also be written as

f ±
q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ei( N+1
2 φ−φ0 )√

2
iq

N

[
(−1)qg(q,−φ)

+g(q, φ)
]
, if φ �= ± π

N q,

ei( φ
2 −φ0 )√

2
, if φ = ± π

N q.

(C5)

Then

Im[( f ±
q )2] ∝

{
sin[(N + 1)φ − 2φ0] if φ �= ± π

N q,

sin(φ − 2φ0) if φ = ± π
N q,

(C6)

for Im[( f ±
q )2] = 0; for all q it follows that

φ0 =
{

N+1
2 φ + π

2 n if φ �= ± π
N q,

φ

2 + π
2 n if φ = ± π

N q,
(C7)

∀ n ∈ Z. Notice we can write the second case result as the first
one without any loss of generality by changing the variable
n = q + n′. As such, Im[χx] = 0 when

φ0 = N + 1

2
φ + π

2
n; ∀ n ∈ Z. (C8)

APPENDIX D: SPIN SQUEEZING
FOR THE INCOMMENSURATE PHASE

We showcased the best squeezing results for the initial
coherent state |θ = 0, φ = 0〉 = ⊗

j |↑〉 j in Sec. V B (Fig. 6).
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Here, we show that other choices for the initial state can pro-
vide different results. They are shown in Fig. 8 for the initial
states |θ = π/2, ϕ = 0〉 [Figs. 8(a)–8(d)] and |θ = π/2, ϕ =
π/2〉 [Figs. 8(e)–8(h)]. The unitary evolution with the initial
state being the eigenstate of Ŝx, |θ = π/2, ϕ = 0〉, shows
practically no squeezing except very close to the commen-
surate phases or when γ is very small [see Fig. 8(a)–8(d)].
On the other hand, when the initial state is the eigenstate of
Ŝy, |θ = π/2, ϕ = π/2〉, the squeezing dynamics is the same
as for the initial state |θ = 0, φ = 0〉, which is presented in
Fig. 6. This is shown in Figs. 8(e)–8(h).

APPENDIX E: CALCULATION OF η

FOR COMMENSURATE PHASES

For commensurate phase φ = 2πn/N , it is possible to
calculate χz and χx analytically. Consequently, one can
obtain η.

We make use of a method originally used in the study of
random walks on lattices [47,48] and also employed to study
excitons in molecular aggregates [49].

For convenience, let us represent Eqs. (25) and (26) in the
following way:

χz = �2

4JSE(N − 1)
F (φ)

diag, (E1)

χx = �2

4JSE(N − 1)
F (φ)

off , (E2)

where we have defined the dimensionless sums F (φ)
diag and F (φ)

off :

F (φ)
diag = 1

N

N∑
j,l=1

Ej,l eiφ( j−l ), (E3)

F (φ)
off = 1

N

N∑
j,l=1

Ej,l eiφ( j+l )−i2φ0 , (E4)

where

Ej,l = 2

N

N∑
q=1

cos
[

πq
N

(
j − 1

2

)]
cos

[
πq
N

(
l − 1

2

)]
cos(πq/N ) − p

. (E5)

Here, we added the q = N term, which is zero, and introduced
p = 1 + ε to avoid divergences. The limit ε → 0+ will be
taken at the end of calculations.

The main idea in finding this sum is to expand the denom-
inator into a geometric series. To achieve this, we rewrite the
denominator in the following way:

cos(πq/N ) − p = −b

2
[1 − b−1eiπq/N ][1 − b−1e−iπq/N ],

(E6)
where

b = p +
√

p2 − 1. (E7)

By using the symmetry of the summand to expand the sum-
mation limits, we can rewrite Ej,l as

Ej,l = −Cj+l−1 − Cj−l − 1

N

1

1 − p
, (E8)

where

Cn = 1

bN

N∑
q=1−N

eiπqn/N

[1 − b−1eiπq/N ][1 − b−1e−iπq/N ]
, (E9)

with C−n = C∗
n . Note that the last term in Eq. (E8) cancels the

added q = 0 term in the summation.
Representing the denominator in terms of the geometric

series, we have

Cn = 1

bN

N∑
q=1−N

∞∑
r=0

∞∑
s=0

eiπq(n+r−s)/N b−(r+s). (E10)

Using

1

N

N∑
q=1−N

eiπq(n+r−s)/N = 2
∞∑

m=−∞
δn+r−s,2Nm, (E11)

we obtain

Cn = 2

b

∞∑
m=−∞

∞∑
r=0

∞∑
s=0

b−(r+s)δn+r−s,2Nm.

Due to the Kronecker delta, the terms in the summation are
nonzero only if s = r + n − 2Nm or, equivalently, if r =
s − n + 2Nm. Assuming that 0 � n < 2N , the integer s =
r + n − 2Nm is s � 0 if m � 0, whereas the integer r = s −
n + 2Nm is r � 0 if m � 1. Therefore, it is convenient to split
the summation over m into a part with m < 1 and one with
m > 0, giving

Cn = 2b−1
∞∑

m=0

∞∑
r=0

b−(2r+2Nm+n)

+ 2b−1
∞∑

m=1

∞∑
s=0

b−(2s+2Nm−n). (E12)

After evaluating the geometric sums, we arrive at

Cn = 2

b − b−1

b−|n| + b−2N+|n|

1 − b−2N
, (E13)

where we have used the relation C−n = C∗
n .

Taking the limit ε → 0+, we obtain

−3NEj,l = 1 − 3 j + 3 j2 − 3l + 3l2 + 3N

− 6 max ( j, l )N + 2N2.
(E14)

Therefore, we can rewrite Eq. (E3) in terms of a double
summation over j > l and a single summation for j = l:

F (φ)
diag = 2

N

N∑
j=1

j−1∑
l=1

Ej,l eiφ( j−l ) + 1

N

N∑
j=1

Ej, j . (E15)

Performing this summation, we obtain

F (φ)
diag = − csc2

(πn

N

)
. (E16)

Remembering that φ = 2πn/N , we can rewrite this as

F (φ)
diag = 2

cos φ − 1
, (E17)

thus proving the identity mentioned in the main text.

104301-11



T. HERNÁNDEZ YANES et al. PHYSICAL REVIEW B 108, 104301 (2023)

As for F (φ)
off , the steps are analogous; first, we rewrite the

sum (E4):

F (φ)
off = 2

N

N∑
j=1

j−1∑
l=1

Ej,l eiφ( j+l )−i2φ0

+ 1

N

N∑
j=1

Ej, j ei2φ j−i2φ0 .

(E18)

For the initial phase φ0 = φ(N + 1)/2, the summation yields

F (φ)
off = 1

2
csc2

(πn

N

)
, (E19)

or, equivalently,

F (φ)
off = − 1

cos φ − 1
, (E20)

as expected.

Having both F (φ)
diag and F (φ)

off , we can confirm that

η = Re
[
F (φ)

off

]
F (φ)

diag

= −1

2
, (E21)

as clearly seen in Fig. 3.
The exceptional case of φ = π must be considered sepa-

rately for φ0 = φ(N + 1)/2:

F (π )
diag = −F (π )

off = 1. (E22)

In general, for any φ0 we have the following identities:

F (π )
off = 1

2
ei( 2πn

N −2φ0 ) csc2
(πn

N

)
, (E23)

or, equivalently,

F (π )
off = − ei(φ−2φ0 )

cos φ − 1
. (E24)
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Chapter 7

Spin Squeezing under
Imperfections and Holes

We have found a very successful scheme when extending the Fermi–Hubbard
model with spin orbit coupling in the Mott insulating phase. We achieve OAT
and TACT under both PBC and OBC while reducing the risk of particle losses.
We can also obtain very similar results for bosons, for which the derivation
of the effective models is almost identical. However, spin orbit coupling can
be difficult to engineer in the lab when looking for a very precise value of the
phase, more so for a geometry that respects PBC. In this chapter, we explore
spin squeezing in the Mott insulating phase using bosons by studying two dif-
ferent sources of OAT models: inhomogeneous magnetic fields and anisotropic
contact interactions. We work under OBC whenever possible to produce more
realistic results with respect to experimental conditions. To validate the ro-
bustness of these implementations, we also consider the effects of occupation
defects in the form of site vacancies or holes.

The results shown in this chapter are the result of our own research and
have been published as:

T. Hernández Yanes, A. Niezgoda, and E. Witkowska, “Exploring spin
squeezing in the Mott insulating regime: Role of anisotropy, inhomogeneity,
and hole doping”, Physical Review B 109, 214310 (2024).

7.1 Squeezing via Contact Interactions in the Mott
Insulating Phase

We already made use of anisotropic contact interactions in the superfluid
regime to generate squeezing in chapter 5, but it also has a relevant effect
in the Mott insulating regime. In this scenario, as explained in section 3.3, in
the presence of anisotropy ∆ ̸= 1 we obtain the Heisenberg XXZ model as an
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effective model of the base Bose–Hubbard model.

ĤXXZ = −J⊥
M∑

i=1

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1

)
. (7.1)

While this is a well known fact, the key insight becomes apparent when
we take into account some of our previous observations while developing our
effective models:

• Local spin excitations build up the magnon states, which are excited
states of the XXX model.

• If the perturbation does not match with a particular magnon excitation,
it might couple to a number of them, if not all.

• These excitations can be produced along any axis, not only perpendicular
to the spin quantisation axis.

Given these observations, what would happen if we have a perturbation in
our Hamiltonian that excites two spins instead of a single one? The natural
conclusion would be the coupling to two-magnon excitations. These statesgive
us an even higher energy manifold than single magnon excitations that can
also be exploited to obtain squeezing.

To study the anisotropy as a perturbation at the level of the Heisenberg
model, we simply add and subtract terms in our Hamiltonian to recover the
XXX model with an extra term −J⊥(1−∆)

∑
j Ŝ

z
j Ŝ

z
j+1. This term acts as our

perturbation.
While two-magnon states are more complicated to solve and in most cases

their solution is not exact [105], their eigenenergies are well defined and are
sufficient for our purposes. This is because, while we need to be in the per-
turbative regime, the perturbation already generates a zero-order term that
results in an effective OAT model by itself.

Ĥ
(1)
eff = χ(1)Ŝ2

z , (7.2)

with χ(1) = J⊥(1 − ∆)/(M − 1). As we excite all the two-magnon states,
we need to fulfil the energy gap condition for the smallest of them or we risk
getting out of the perturbative regime. As the smallest energy gap depends
on the inverse of the system size, this effect will vanish when M → ∞.

Contribution from second-order processes can be largely ignored as they
are much smaller in principle and provides squeezing around the same axis.
It can be found that they provide terms ∝ Ŝ2

z and ∝ Ŝ4
z , but the specific

coefficients are difficult to derive.
While this method to generate squeezing disappears when M → ∞, any

slight difference in contact interactions will have a relevant effect in the system.
Moreover, the smaller this difference is, the faster the squeezing process will
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be. This is a relevant effect that needs to be taken into account for realistic
setups and also a strong contender in terms of implementation simplicity.

7.2 Squeezing via Inhomogeneous Magnetic Field
in the Mott Insulating Phase

Another way to experimentally engineer the spin orbit coupling term is to
produce a spatially varying magnetic field across the lattice, polarised perpen-
dicularly to the spin quantisation axis. This scheme still suffers from the same
problem of achieving a commensurate phase with the lattice, but it gives us an
insight on how to make our proposed model more robust: magnon excitations
also happen if we polarise the magnetic field along the spin quantisation axis
as

ĤB =

M∑

j=1

βjŜ
z
j . (7.3)

While this might be a soft conceptual realisation, it makes mathematical
derivations much more straightforward.

As the spin excitation term is now diagonal in the Fock state basis, there
is no need to use the rotated frame to study the virtual transitions. We
can instead directly apply perturbation theory to the Hubbard model with
eq. (7.3) to retrieve the first effective Hamiltonian for the Mott insulating
phase condition, with J ≪ Uσ,σ′ , |βj − βj+1|/2 ≪ Uσ,σ′ ; ∀j, σ, σ′. We refer to
Uσ,σ′ as the magnitudes of the contact interactions depending on the internal
states of the bosons. After that, we obtain the Heisenberg XXZ model with a
perturbation in the form of the inhomogeneous magnetic field.

Ĥ = ĤXXZ + ĤB. (7.4)

To remove the contribution from the two magnon excitations that comes from
the anisotropic contact interactions, we choose ∆ = 1 so that our Hamiltonian
becomes

Ĥ = ĤXXX + ĤB. (7.5)

As we discussed, single magnon states can be defined along any axis and
in turn this results in an easier derivation of the effective OAT model with
respect to the Heisenberg model.

Ĥ
(2)
eff = χŜ2

z + vŜz, (7.6)

where χ =
∑

q |fq|2/Eq with fq being the fidelity to the single magnon states
with the perturbation and v =

∑
j βj/M .

If we excite a single magnon of quasi-momenta q, the perturbative condition
will be |βj | ≪ Eq;∀j. In general, we might be exciting to more single magnon
states, so the energy gap can become smaller. However, this also depends
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on the exact shape of the inhomogeneous magnetic field, as it might have
negligible fidelity with magnon excitations of lower q.

This guarantees the existence of squeezing for any sufficiently small inho-
mogeneous magnetic field. For instance, we can even use a random magnetic
field and obtain squeezing if the magnitude of the field is, at worst, ≪ Eq=1.
The setup we propose is both very resilient and sufficiently easy to construct.
We thus conclude the inhomogeneous magnetic field is a strong candidate to
obtain scalable spin squeezing in the lab.

7.3 Effect of hole doping

In this chapter, we have derived effective models under two scenarios, inho-
mogeneous magnetic field or anisotropy in contact interactions for the Bose–
Hubbard model. Both of them yield an effective OAT model with or without
a linear term, respectively. However, both results rely on the half-filling con-
dition to fix particles in place. The corresponding t–J model in the presence
of holes

Ĥt−J = −t
∑

⟨j,i⟩
P̂ †
0

(
â†j âi + b̂†j b̂i

)
P̂0 + ĤXXZ + ĤB, (7.7)

where t ∈ {0, J} and P̂0 projects into the single occupied states, is difficult to
study analytically. We can nevertheless find limiting cases that are easier to
analyse to obtain an estimation of the squeezing level we will obtain. In this
section we explore such a case where position and number of holes are fixed
over time. We will see how they make the dynamics separable into partial
chains. The opposite limiting case is when holes move infinitely fast across the
lattice and the system acts as if fully filled.

As discussed in previous chapters, when holes are present in the system in
the Mott insulating phase, the system maps into a t–J model, where tunnelling
processes are still possible among single occupied states. While the tunnelling
rate is the same as before applying perturbation theory, this rate will be larger
than the magnitude of the spin exchange term by virtue of the approximation
itself. In other words, since J ≪ Uσ,σ′ , we obtain J ≫ J⊥.If we express the
evolution of a coherent state in units of J⊥, the tunnelling processes will be
very quick in comparison. We can picture particles moving across neighbour
vacancies, while the spin exchange processes will occur as if no holes where
present in the system, up to a filling factor correction. Of course, this does not
mean particles move across the lattice without friction like in the superfluid
regime. Particles will still block each other from tunnelling to their respective
sites as Uσ,σ′ ≫ J , but when a particle finds a hole next to its position, it will
immediately travel to the next site. This approximation makes sense in the
limit where Uσ,σ′/J → ∞.

The opposite limiting case, which is reached due to the perturbation con-
dition, is the case where holes are fixed in certain locations across the lattice
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in time. This is a relevant limit of the system, even if idealised, which gives
us insight into the dynamics of the t–J model.

Let us then focus on this particular limiting case of fixed holes. If we look
at the Heisenberg model described in previous chapters, we will notice the
correlations are nearest neighbour only. If a hole is present in the system,
it will simply cancel the effect of any term that interacts with it, isolating
the sub-systems bounded by these holes from any other part of the system.
We will refer to this sub-systems as partial chains, as illustrated in figs. 7.1
and 7.2. We found these partial chains evolve independently from one another,
as the Dicke states or the one and two magnon excitations can all be defined
independently for each chain, as explained in section 3.3.

The second moments of the spin operators can introduce problems to this
realisation, as they are needed to calculate the co-variances present in the
spin squeezing parameter ξ2 and might account for correlations among partial
chains. Nevertheless, the co-variances recover this independent behaviour, so
the study of the squeezing parameter can be done within this framework.

Let us now focus on the possible effective models for each partial chain. If
the model is generated through anisotropic contact interactions, we obtain a
pure OAT model (7.2).The probability distributions of the partial chain repre-
sented on the Bloch sphere will mostly overlap in time, with small discrepancies
due to the spin length of each partial chain and the coefficient χ of each partial
chain, which also depends on its length, as illustrated in fig. 7.1.

However, when the model appears as a result of an inhomogeneous mag-
netic field, a linear term vŜz is present in the partial chain Hamiltonian, as
described in eq. (7.6). This implies the mean spin direction will rotate along
the equator of the Bloch sphere at a rate ∝ cos 2π/v. As v changes on each
partial chain, the partial chain mean spin directions will rotate at different
rates with respect to each other. This is detrimental for squeezing as it in-
evitably lowers ⟨Ŝn⟩ unless they overlap. Another effect of the magnetic field
is that the coefficient χ of each sub-system might be different depending on
both the partial chain length and the magnetic field itself. In any case, the
largest contribution to the loss of squeezing is the misalignment of the mean
spin directions, as we demonstrate in fig. 7.2.

In any case, this gives us a semi-analytical model, as each partial chain
evolution is analytical but adding them up can be non-trivial.

7.4 Movement of holes

In the previous section we mentioned the limiting cases of the model when
tunnelling is allowed in the presence of holes: frozen holes during dynamics
and infinite effective tunnelling. In this section, we explore numerical results
of the corresponding t–J models, for which we tune the effective tunnelling

93



7.4. MOVEMENT OF HOLES CHAPTER 7. IMPERFECTIONS

First chain (L1, Ĥ1) hole Second chain (L2, Ĥ2)

Full chain

Decomposition of the system

t1 t2

t

0.0

0.5

1.0

ξ2 R

Anisotropic Interactions (Ĥeff,n = χnŜ
2
z,n)

t1 t2

Probability distributions stay
aligned as OAT maintains the mean

spin direction during dynamics.

Slightly different squeezing

time scales (∼ L−2/3
n /χn) can

affect the composite squeezing.

Figure 7.1: Spin squeezing dynamics induced by anisotropy of the contact
interactions in the presence of a hole in the system. When the hole is fixed
at a given site, we can decompose the system as two independent spin chains.
Results for independent chains as well as for the full chain are indicated by
different colors, as in the upper diagram. The purple point in the Bloch spheres
indicate the mean spin direction of the full chain. The purple brackets that
accompany the point indicate the minimal variance (∆Ŝmin)

2 direction and
magnitude. We label the partial chains by numbers 1 and 2. M = 13, N = 12.
L1 = N1 = 5, L2 = N2 = 7. ∆ = 0.98, βj = 0.

t/J⊥ from zero (fixed holes) to a large value with respect to the energy scale
of the system.

Let us imagine we perform an experiment where we have a fixed number
of sites M and a number of particles N such that N ≤ M , but the location
of the particles in the lattice is completely random for each realisation. After
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First chain (L1, Ĥ1) hole Second chain (L2, Ĥ2)

Full chain

Decomposition of the system

t1 t2

t

0.0

0.5

1.0

ξ2 R

Inhomogeneous Magnetic Field (Ĥeff,n = χnŜ
2
z,n + vnŜz,n)

t1 t2

If probability distributions rotate
at different rates, squeezing is

lost when they oppose each other.

Even when aligned, squeezing
is limited due to different

time scales, since χ1 � χ2.

Figure 7.2: Spin squeezing dynamics induced by an inhomogeneous magnetic
field in the presence of a hole in the system. When the hole is fixed at a given
site, we can decompose the system as two independent spin chains. Results for
independent chains as well as for the full chain are indicated by different colors,
as in the upper diagram. The purple point in the Bloch spheres indicate the
mean spin direction of the full chain. The purple brackets that accompany the
point indicate the minimal variance (∆Ŝmin)

2 direction and magnitude. We
label the partial chains by numbers 1 and 2. M = 13, N = 12. L1 = N1 = 5,
L2 = N2 = 7. ∆ = 1, βj = E

(M−1)
M /50 cos ( π

M (M − 1)(j − 1/2)).

averaging over many of then, we will obtain an initial density matrix like

ρ̂(0) =
1

NP
P




N⊗

j=1

|↑j⟩⟨↑j |
M⊗

k=M−N

|0k⟩⟨0k|


 , (7.8)

where P stands for the sum of all possible permutations of N particles in M
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sites and NP is the total number of said permutations.
In fig. 7.3 we can see how, in the case of the spin squeezing induced by the

inhomogeneous magnetic field, the squeezing is quickly suppressed with the
reduction of particles in the system of fixed size M . Moreover, the time scale
of the squeezing seems to grow with the effective tunnelling. These effects
can be traced to the presence of a linear term in the effective Hamiltonian,
which makes the coherent evolution of the partial chains difficult, even when
correlations between them due to tunnelling appear.

On the contrary, the coherent squeezing for the scenario of anisotropic con-
tact interactions is remarkable even in the case where the effective tunnelling
is suppressed. The different configurations add up coherently, since the ab-
sence of a linear term in the effective Hamiltonian allows for the alignment of
the probability distributions of the partial chains. In the cases where effec-
tive tunnelling is allowed, the squeezing level immediately jumps very close to
the idealised scenario of infinite tunnelling, even for small values. Also, the
squeezing is much more resilient to the reduction of the particle number.

Similar conclusions can be drawn from the results reflected in the publica-
tion, where we employ a more involved density matrix related to the on-site
filling factor. In that case, time scales seem to adhere better to the proposed
estimations, but the conclusions about the drastic change for the magnetic
field scenario and the resilience of the anisotropic scenario are the same.

96



CHAPTER 7. IMPERFECTIONS 7.4. MOVEMENT OF HOLES

0.0 0.1 0.2 0.3

χt

0.0

0.2

0.4

0.6

0.8

1.0

ξ2

a N = 11

Anisotropy

0.0 0.1 0.2 0.3

χt

b N = 11

Mag. Field
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N

0.4

0.6

0.8

1.0

ξ2 b
e
st

c

6 7 8 9 10 11 12

N

d

0.00 6.04 12.38 24.75
t / J⊥

Figure 7.3: Evolution of spin squeezing parameter induced by anisotropy (a)
and inhomogeneous magnetic field (b) for different values of the tunnelling
rate t ∈ {0, J} and filling factor f . In each instance, χ is estimated from the
corresponding effective models when N = M = 12. In all cases, the initial
state is characterized by the density matrix in eq. (7.8). Grey areas indicate
the regions between the semi-analytical upper and lower bounds bounds. The
best squeezing ξ2best with respect to N is shown in (c) and (d) when its genera-
tion is governed by anisotropy and inhomogeneous magnetic field, respectively.
To tune the effective tunnelling, we fix J = 1 but change 2Uab/(1 + ∆) ∈
{24.4J, 50J, 100J}, with J⊥ = J2/(4Uab), Uaa = Ubb = 2Uab/(1 + ∆). For
the anisotropic case ∆ = 0.98, βj = 0, while for the magnetic field case
∆ = 1, βj = E

(M−1)
M /50 cos ( π

M (M − 1)(j − 1/2)).
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Spin squeezing in systems with single-particle control is a well-established resource of modern quantum tech-
nology. Applied in an optical lattice clock it can reduce the statistical uncertainty of spectroscopic measurements.
Here, we consider dynamic generation of spin squeezing with ultra-cold bosonic atoms with two internal states
loaded into an optical lattice in the strongly interacting regime as realized with state-of-the-art experiments using
a quantum gas microscope. We show that anisotropic interactions and inhomogeneous magnetic fields generate
scalable spin squeezing if their magnitudes are sufficiently small, but not negligible. The effect of nonuniform
filling caused by hole doping, nonzero temperature, and external confinement is studied at a microscopic level
demonstrating their limiting role in the dynamics and scaling of spin squeezing.

DOI: 10.1103/PhysRevB.109.214310

I. INTRODUCTION

Quantum technology is an emerging interdisciplinary field
of study that combines the areas of physics, mathematics,
and computer science. A prominent resource fueling emergent
technologies like quantum simulators, computers and sensing
is entanglement [1–4], a concept originating from the quan-
tum mechanics formalism to explain correlations that cannot
be reproduced classically. A plethora of useful entanglement-
enhanced approaches are examined and spin squeezing is a
well-established one [5].

Spin squeezing applies to a system composed of N qubits,
further described by the collective spin with the corresponding
quantum number S = N/2. The uncertainty of spectroscopic
measurements of unknown phase ϕ for a given state is
�ϕ = ξ/

√
N , where

ξ 2 = N�2Ŝ⊥min

|〈S〉|2 (1)

is the spin squeezing parameter while �2Ŝ⊥min is the minimal
variance in the plane orthogonal to the direction of the mean
collective spin 〈S〉, where S = (Ŝx, Ŝy, Ŝz ) [6,7]. If ξ 2 < 1, the
corresponding state is spin squeezed. However, a remarkable
metrological gain is obtained with scalable spin squeezing
when its level decreases significantly with the total number
of spins.

The archetypal model undergoing such desired scalability
is the famous one-axis twisting (OAT) protocol (all-to-all in-
teractions) where the best squeezing scales with the system
size as ξ 2

best ∝ N−2/3 [8]. It was simulated with pioneering
experiments using bimodal Bose-Einstein [9,10] and spinor

*Contact author: hdez@ifpan.edu.pl

[11–14] condensates utilizing atom-atom collisions and atom-
light interactions in cavity setups [15,16]. These platforms,
however, weakly support a single-spin addressing and control
required very often by quantum technology tasks. There is an
increasing interest in generation of spin squeezed states using
platforms where individual addressing of spins is possible
[17–24]. Recent experiments using an array of trapped ions
[25] and Rydberg atoms [26,27] have demonstrated the gener-
ation of such scalable squeezing with tens of spins. Ultracold
atoms in optical lattices offer yet another platform for scalable
spin squeezing generation in a system composed of tens of
thousands of spins. It was already considered for spin squeez-
ing generations by utilising atom-atom collisions for bosons
in superfluid regime [18,19,23] and spin-orbit coupling in the
Mott phase [20,28,29].

In this paper, we study dynamical generation of scal-
able spin squeezing with ultracold bosonic atoms in two
internal states loaded into a one-dimensional optical lattice.
We consider the strongly interacting regime with one atom per
lattice site, where the system forms a ferromagnetic Heisen-
berg XXZ spin chain with nearest-neighbor interactions
[30,31]. This is the Mott insulating regime. The anisotropy
of the corresponding XXZ spin model is set by intra- and in-
terspecies interactions. When interaction strengths equal each
other, the model reduces to the isotropic XXX Heisenberg
spin chain. We concentrate on the system and parameters as in
the recent experiments with rubidium-87 atoms in the optical
lattice, which can be diagnosed using the quantum gas mi-
croscope when the nearly single-atom control and resolution
were obtained [32].

However, our analytical theory is general and can be ap-
plied to trapped ions and molecules when they simulate the
same models [33,34].

Even for the simple system considered by us, experimen-
tal imperfections may arise such as slight anisotropy of the

2469-9950/2024/109(21)/214310(14) 214310-1 ©2024 American Physical Society
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interactions, residual local magnetic fields, hole doping, ex-
ternal trapping effects, or nonzero temperature. They could
negatively affect the dynamics of the system. Throughout this
work, we found that in most cases, not only these different
effects can be accurately accounted for, but in most cases, they
are beneficial for spin squeezing generation.

We show analytically, and confirmed numerically, that
a weak anisotropy of interactions allows generating scal-
able spin squeezing from the initial spin coherent state,
and the OAT model approximates the dynamics well. While
recent work [23] also demonstrates spin squeezing gener-
ation through anisotropy, here we strictly define the weak
anisotropy regime where scalable spin squeezing can be ob-
served. Beyond that, we evaluate analytically the timescale
of the best squeezing showing its experimental feasibility.
We show that adding a weak inhomogeneous magnetic field
generates scalable spin squeezing by itself, similarly. The
coexistence of weak anisotropy and inhomogeneous field does
not destroy squeezing generation but smoothly changes the
timescale.

We address the problem of hole doping on the genera-
tion of spin squeezing. We develop a microscopic theory to
explain the change in the variation of the spin squeezing
parameter in time due to hole doping. While the squeezing
due to anisotropic interactions is weakly affected, the inho-
mogeneous field introduces subsystem rotations that modulate
squeezing over time. This result is proven analytically for
the case when holes are fixed in place. We also explore the
t−J model, where tunneling is allowed and identify the upper
and lower bounds for the generation of squeezing at a given
filling factor. We find in the anisotropy case that squeezing
immediately converges to the lower bound result if tunneling
is allowed. On the other hand, in the inhomogeneous magnetic
field case the squeezing level hardly changes with the effective
tunneling. In both cases, the movement of holes facilitates
the correlation between individual atoms initially belonging
to different partial chains separated by these holes.

The effect of harmonic trapping is also taken into account
and even beneficial acceleration of dynamics is observed.
Lastly, we explore the effects of nonzero temperature on the
squeezing generation of our model. We illustrate our results
for the parameters of experiments [32] demonstrating they can
be realized with state-of-the-art techniques.

II. MODEL

We consider N rubidium-87 atoms in two internal states |a〉
and |b〉 loaded in an optical lattice potential having M lattice
sites. For simplicity, we consider a one-dimensional lattice
with open boundary conditions. The system is described by
the two-component Bose-Hubbard model

ĤBH = − J
∑

j,i= j±1

(â†
j âi + b̂†

j b̂i )

+ Uaa

2

∑
j

n̂a
j

(
n̂a

j − 1
)

+ Ubb

2

∑
j

n̂b
j

(
n̂b

j − 1
) + Uab

∑
j

n̂a
j n̂

b
j, (2)

in the lowest Bloch band and under the tight-binding approxi-
mation [35]. â j (b̂ j) is the annihilation operator of an atom in
internal state a (b) in the jth site of the lattice, and n̂a

j = â†
j â j ,

n̂b
j = b̂†

j b̂ j are the corresponding number operators. J is the
tunneling rate, the same for bosons in the states a and b.
Uaa, Ubb, and Uab are specific intraspecies and interspecies
interaction strengths. The model (2) can be realized using
a quantum gas microscope [32,36]. We assume interaction
dominates over the tunneling strength leaving the system in
the Mott insulating regime. In the case of unit filling, one
atom per lattice site, the effective Hamiltonian reduces to the
Heisenberg XXZ model

ĤXXZ = −J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + �Ŝz

j Ŝ
z
j+1 − 1

4

)
, (3)

where the couplings J⊥ = 4J2U −1
ab and anisotropy parame-

ter � = Uab/Uaa + Uab/Ubb − 1 are derived by second-order
perturbation theory in the tunneling [30]. When � = 1 the
Hamiltonian takes the form of isotropic Heisenberg XXX
model. Here, Ŝx

j = (Ŝ+
j + Ŝ−

j )/2, Ŝy
j = (Ŝ+

j − Ŝ−
j )/(2i), Ŝz

j =
(â†

j â j − b̂†
j b̂ j )/2 with Ŝ+

j = â†
j b̂ j , Ŝ−

j = (Ŝ+
j )†. The collective

spin operators are just a summation over the individual ones,
Ŝσ = ∑M

j=1 Ŝσ
j for σ = x, y, z,±.

The generation of spin squeezing starts with the ini-
tial spin coherent state |θ, ϕ〉 = e−iϕŜz e−iθ Ŝy

⊗M
j=1 |a〉 j for

ϕ = 0 and θ = π/2 followed by unitary evolution with the
Hamiltonian (3). Note that the state for ϕ = θ = 0 is the
Dicke state |S, m〉 = ⊗M

j=1 |a〉 j for maximal spin quantum
number S = N/2 and magnetization m = N/2. In our numeri-
cal simulations, we consider open boundary conditions [29]
and use the parameters as in the recent experiment of A.
Rubio-Abadal et al. [32] with 87Rb atoms, lattice spacing
d = 532 nm, tunneling amplitude J = h̄ × 2π × 24.8 Hz and
almost equal inter- and intraspecies interactions Uaa ∼ Ubb ∼
Uab = U [37] with U = 24.4J . For the sake of simplicity,
timescales will be expressed in tunneling units. The initial
state is prepared as a coherent state along the x direction
in the Bloch sphere, namely, |θ = π/2, ϕ = 0〉. Finally, the
spin squeezing parameter (1) is evaluated for collective spin
operators.

III. ROLE OF ANISOTROPY

The dynamical generation of spin squeezing is possible by
anisotropic interactions, that is when � �= 1. We demonstrate
this feature in Fig. 1(c) by plotting the best spin squeezing,
see also Fig. 3 in Ref. [23]. This numerical observation is con-
firmed by our perturbative analysis of the system Hamiltonian
(3) when the term Ĥz = −J⊥(� − 1)

∑M−1
j=1 Ŝz

j Ŝ
z
j+1 is treated

as a perturbation to the isotropic XXX model. This leads to
the zero-order dominant term of the form

Ĥ (0)
eff = χ

(0)
M Ŝ2

z , with χ
(0)
M = J⊥

1 − �

M − 1
, (4)

where we omitted constant energy terms. Details of derivation
are described in Appendix B. The resulting Hamiltonian (4)
is the famous OAT model [8] which dynamics is solvable
analytically for any N . The effective model approximates
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FIG. 1. (a) The ratio f between results of the XXZ model (3) and
the effective one (4) for the best spin squeezing ξ 2

best (first minima
of ξ 2) and the best spin squeezing time marked by purple and blue
lines, respectively, when M = N = 16 and � ∈ (−1, 1) ∪ (1, 2].
(b) The same as in (a) but in the perturbative regime enlarged for
� ∈ [2 cos(π/N ) − 1, 1) ∪ (1, 3 − 2 cos(π/N )]. (c) The best spin
squeezing generated dynamically with the XXZ model (3) for dif-
ferent values of � (see markers in upper and middle panels) vs N .
A scalable level of squeezing is possible in the perturbative regime
marked by triangles and squares.

the dynamics of spin squeezing in the perturbative regime
when 2 cos(π/M ) − 1 � � � 3 − 2 cos(π/M ) and � �= 1.
In Appendix D we collect specific analytical expressions for
the first and second moments of spin components governed
by OAT.

The validity of our analytical finding is demonstrated in
Figs. 1(a) and 1(b) by showing the relative level of best
squeezing and best squeezing time obtained numerically from
the full XXZ model (3) and the effective one (4). Notice
the comparison of timescales (blue line) is slightly different
than unity in the perturbation regime since we calculate χ

(0)
M

only up to first order. However, the comparison of squeez-
ing level (purple line) is less sensitive to this constraint of

the approximation. For the considered set of parameters, the
characteristic timescale for the best squeezing ξ 2

best is close
to the one predicted by the OAT model, namely, Jt/h̄ �
31/6(M − 1)N−2/3Uab/(4|1 − �|J ). It is Jt/h̄ � 850 for M =
N = 16, � = 0.98, and Uab = 22.2J (� + 1). We found nu-
merically for this set of parameters that the spin squeezing
parameter for the OAT model reaches the minima at Jt/h̄ �
692 while for the XXZ model at Jt/h̄ � 713.

IV. INHOMOGENEOUS MAGNETIC FIELD

The addition of an external homogenous magnetic field
BŜz to the XXZ model does not spoil spin squeezing gen-
eration as long as N is fixed. It contributes in the same
form to the effective Hamiltonian (4) leading to the model
Ĥeff = χ

(0)
M Ŝ2

z + BŜz which dynamics is solvable analytically
as shown in Appendix D.

Similarly, even a weak inhomogeneous magnetic field

ĤB =
M∑

j=1

β j Ŝ
z
j (5)

does not destroy spin squeezing generation but changes the
timescale of dynamics. To demonstrate this effect, let us con-
sider the isotropic case when � = 1 with an addition of a
weak inhomogeneous magnetic field (5). The second-order
correction obtained by using the Schrieffer-Wolff (SW) trans-
formation [28] takes the OAT form

Ĥ (2)
eff = −χ

(2)
M Ŝ2

z + vMŜz, (6)

when ĤB is treated as a perturbation to the XXX model and
where

χ
(2)
M = 1

M − 1

M−1∑
q=1

∣∣c(q)
M

∣∣2

E (q)
M

, (7)

vM = 1

M

M∑
j=1

β j, (8)

with

c(q)
M =

M∑
j=1

p(q,M )
j (β j − vM ), (9)

p(q,M )
j =

√
2

M
cos

[
π

M

(
j − 1

2

)
q

]
, (10)

E (q)
M = J⊥

[
1 − cos

( π

M
q
)]

, (11)

for q ∈ [1, M − 1]. The derivation is explained in
Appendix C. We omitted constant energy terms in (6).
The validity of (6) for the dynamical generation of spin
squeezing via an inhomogeneous field (5) when � = 1 is
demonstrated in Fig. 2. This is an interesting example of
when spin squeezing, and therefore two-body correlations
between elementary spins, are induced by inhomogeneity.
In this case, the mechanism of spin squeezing generation
is caused by spin wave excitations which are extended over
the entire system allowing individual spin to correlate
[29]. It is the same mechanism as for the dynamical
generation of spin squeezing via spin-orbit coupling
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FIG. 2. The spin squeezing parameter ξ 2 for isotropic
XXX Heisenberg model with inhomogeneous field ĤB

and the effective one (6) are marked by solid and dashed
lines, respectively. The amplitudes of magnetic field are
βl = √

2/M cos [π (l − 1/2)(M − 1)/M]. Here, N = M = 16,
J = 1,Uaa = Ubb = Uab = U = 24.4J, J⊥ = 4 J2

U , 
 = E (M−1)
M /10

(purple lines) and 
 = E (M−1)
M /5 (blue lines) with E (M−1)

M =
J⊥(1 − cos(π M−1

M )).

[20,29]. This means any kind of inhomogeneous magnetic
field (constant from shot to shot) will couple to the spin
wave states, generating squeezing under the appropriate
perturbation conditions. We discuss this point in more detail
in Appendix C where we also show other examples when
the magnetic field takes a random value on each lattice
site. This random potential also leads to the generation of
two-body correlations and spin squeezing in the perturbative
regime.

V. DOPING OF HOLES

In this section, we consider an important effect coming
from the nonoccupied sites which we call holes. In general,
the dynamics is then captured by the t−J model [38,39] which
is the XXZ model with the additional tunneling term. The
tunneling leads to the hole movement along the chain. Here,
we assume that positions of holes are fixed during unitary
dynamics. The approximation is valid in the regime of param-
eters where the tunneling is strongly suppressed as compared
to J⊥. The system dynamics can be then approximated by the
XXZ model. This allows an understanding of the role of holes
at a microscopic level.

Let us first consider the simplest situation with one hole
located somewhere in the middle of the chain (not at the
borders) as illustrated in Fig. 3. Since the hole is not moving,
the configuration can be identified as two independent spin
chains with open boundary conditions.

In this case, the collective Dick state for maximal magne-
tization containing the hole reads

|N/2, N/2〉h = |↑〉 j=1 · · · |0〉 j= jh · · · |↑〉 j=M . (12)

It can be represented as the product state of two partial Dicke
states separated by the empty site,

|N/2, N/2〉h = |NL/2, NL/2〉 ⊗ |0〉 jh

⊗ |NR/2, NR/2〉, (13)

FIG. 3. An example of a configuration with the position of a hole
fixed. The hole located at the third lattice site jh = 3 separates the
chain in two parts. The left (right) partial chain consists of two (four)
spins. The two partial chains are independent Heisenberg spin chains
with open boundary conditions. Their dynamics are independent of
each other.

where NL is the number of spins on the left-hand side of the
hole and NR is the number of spins on the right-hand side. The
empty site does not contribute to the unitary dynamics driven
by the XXZ Hamiltonian with nearest-neighbors interactions.
Therefore we will omit the term |0〉 jh when writing the states
in the remaining part of the paper.

The initial spin coherent state for ϕ = 0 and θ = π/2 reads
|t = 0〉h = e−iŜyπ/2|N/2, N/2〉h. It can be formulated in the
following way:

|t = 0〉h = |L〉 ⊗ |R〉, (14)

where we have introduced

|L〉 = e−iŜy,Lπ/2|NL/2, NL/2〉 (15)

|R〉 = e−iŜy,Rπ/2|NR/2, NR/2〉, (16)

and used Ŝy = Ŝy,L + Ŝy,R with L(R) summing up over the
left(right)-hand part of the chain.1

The dynamics of each partial chain (left and right) is inde-
pendent of each other, and therefore the evolution of the initial
state of the system can be considered as

|ψ (t )〉h = ÛL|L〉 ⊗ ÛR|R〉, (17)

where the unitary operators are ÛL = P̂LeiĤt/h̄P̂L and (ÛR =
P̂ReiĤt/h̄P̂R) with P̂L (P̂R) being the projector operator on the
left (right) partial chain for a given Hamiltonian Ĥ containing
nearest-neighborsinteractions only.

The dynamics of partial chains is well approximated by
effective OAT-like models for a weak anisotropy (4) and inho-
mogeneous magnetic field (6) as we discussed in two previous
sections. However, evolution operators acting on the left and
right partial spin chains need to be constructed appropriately.

1Here, Ŝσ,L = ∑NL
j=1 Ŝσ

j and Ŝσ,R = ∑NR
j=1 Ŝσ

NL+1+ j .
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A. Unitary evolution for partial chains
for weak anisotropic interactions

The effective model in the weak anisotropy limit when
2 cos(π/M ) − 1 � � � 3 − 2 cos(π/M ) and � �= 1 reads

Ĥ (0)
eff,L = −χ

(0)
L Ŝ2

z,L, (18)

for the left partial chain with χ
(0)
L = J⊥(� − 1)/(NL − 1) and

the same for the right partial chain when L is replaced with
R. Therefore the unitary operator describing the dynamics
with the hole for the left partial chains is ÛL = e−iĤ (0)

eff,Lt/h̄ and
similarly for the right partial chain when L is replaced with R.

B. Unitary evolution for partial chains
for weak inhomogeneous magnetic fields

On the other hand, if spin squeezing is generated entirely
by the inhomogeneous magnetic field (5) for � = 1 the fol-
lowing effective model can well approximate the dynamics of
the left partial chain

Ĥeff,L = χLŜ2
z,L + vLŜz,L, (19)

with

χL = 1

NL − 1

NL−1∑
q=1

∣∣c(q)
L

∣∣2

E (q)
L

, (20)

vL = 1

NL

NL∑
l=1

βl , (21)

where

c(q)
L =

√
2

NL

NL∑
l=1

p(q,L)
l (βl − vL ). (22)

For convenience, we have redefined

p(q,k)
j =

√
2

Lk
cos

[
π

Lk

(
j −

(
lk − 1

2

))
q

]
, (23)

E (q)
k = J⊥

[
1 − cos(

π

Lk
q)

]
, (24)

where k is the index of the partial chain, lk is its starting site,
Lk is its length and q ∈ [1, Lk − 1].

The form of the effective model (19) for the right partial
chain is the same when one replaces L with R and where

vR = 1

NR

NR∑
l=NL+2

βl (25)

c(q)
R =

√
2

NR

NR∑
l=1

p(q,R)
l

(
βNL+1+l − vR

)
. (26)

The corresponding unitary operator describing the system
dynamics of the initial state (14) is ÛL(R) = e−iĤeff,L(R)t/h̄.

C. Evaluation of spin squeezing parameter

To calculate the evolution of the spin squeezing param-
eter (1) one can use the approximated effective models as
long as the system parameters are in the perturbative regime.
This simplifies the calculations and enables the simulation

of large systems unattainable by exact many-body numerical
simulations.

To demonstrate the validity of our treatment of the system
dynamics with hole doping, let us start with a general treat-
ment of the first and second moments of spin operators that
are necessary for calculations of ξ 2. The unitary evolution of
first moments separates into two parts, e.g., if X̂ = X̂L + X̂R,
we have

〈X̂ (t )〉h = 〈X̂ 〉L + 〈X̂ 〉R, (27)

where subscript L (R) refers to the left (right) partial chain.
〈X̂ (t )〉h is a sum over the two partial chains, each evolved
with the corresponding unitary operator. On the other hand,
an expectation value of second moments is separated into four
parts, e.g., X̂Ŷ = (X̂L + X̂R)(ŶL + ŶR), and reads

〈X̂Ŷ (t )〉h = 〈X̂Ŷ 〉L + 〈X̂Ŷ 〉R + 〈X̂ 〉L〈Ŷ 〉R + 〈X̂ 〉R〈Ŷ 〉L. (28)

Each term in 〈X̂Ŷ (t )〉h evolves with the unitary operator
marked by the subscript L or R. While (28) shows an ap-
parent interconnection between partial chains, the covariance
�(X̂Ŷ )2

h = 〈X̂Ŷ 〉h − 〈X̂ 〉h〈Ŷ 〉h turns out to be simply additive

�(X̂Ŷ )2
h = �(X̂Ŷ )2

L + �(X̂Ŷ )2
R. (29)

According to the definition (1), this means that spin
squeezing is immediately reduced when the system is broken
into partial chains, however, the minimal variance can be
optimal when the probability distributions of the partial chains
add up appropriately.

We illustrate this observation in Fig. 4. One can observe
a good agreement between full many-body numerical cal-
culations (solid lines) and approximated effective dynamics
(dashed lines) as described in Secs. V A and V B. In the
anisotropy case, shown in Fig. 4(b), the partial chains obey
Hamiltonian (18) which maintains the mean spin direction
across the short time dynamics. Thus the main effect in the
suppression of squeezing is due to the reduction of the collec-
tive mean spin. There is a secondary effect in the broadening
of the minimal variance when the squeezing timescales of the
partial chains differ (i.e., χ

(0)
L �= χ

(0)
R ).

On the other hand, the results for spin squeezing in the
presence of an inhomogeneous magnetic field (19) includes
a linear term that makes the probability distribution of each
partial chain rotate around the Ŝz axis at different velocities.
This creates oscillations in the squeezing parameter due to the
misalignment of the partial mean spin directions, as illustrated
in Fig. 5. This feature is further discussed in Appendix F.

Generalization of these results to any number and configu-
rations of fixed holes is straightforward, as detailed explained
in Appendix E.

D. Effective bounds when movement of holes is allowed

In the previous sections, we assumed the positions of
particles and holes were fixed. However, a realistic scenario
includes particle movement as stated in this section’s begin-
ning. The dynamics is then well captured by the t−J model:

Ĥt−J = −t
∑

i, j=i±1

P̂0(â†
i â j + b̂†

i b̂ j )P̂0 + ĤXXZ, (30)
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FIG. 4. (a) Configuration of holes for results shown in bottom
panels. The spin squeezing parameter induced by anisotropy (b) and
inhomogeneous magnetic field (c) for the system with N = 16 atoms
and a single hole (M = 17) at different sites as indicated by color.
The results from the exact many-body simulation are depicted in
solid lines while the ones given by the effective models are depicted
in dashed lines, respectively. In the anisotropic case, Uaa = Ubb =
24.4J,Uab = 0.99Ua (� = 0.98), β j = 0; ∀ j. In the inhomogeneous
magnetic field case, Ua = Ub = Uab = 24.4J, β j = 
 cos( π

M (M −
1)( j − 1/2)), where 
 = E (M−1)

M /50 = J⊥(1 − cos π

M (M − 1))/50.

where P̂0 is a projector operator over the manifold’s ground
states (i.e., single occupancy). We define t ∈ {0, J} to main-
tain the usual notation of the t−J model. The evolution of
a system is constrained to single occupied states but where
particles can tunnel will be trivially bounded by two scenarios:
no tunneling and infinite tunneling. The absence of tunneling,
t = 0 in (30), is equivalent to a system where the holes are
pinned down in fixed sites. Meanwhile, when tunneling is
effectively infinite, the system will behave as if fully occupied
with a certain filling factor f per site. Tunneling is effectively
infinite for a given timescale when the rest of the terms are
energetically much smaller. For instance, an increase in con-
tact interactions in Eq. (3) will in turn decrease J⊥, increasing

FIG. 5. Modulation of spin squeezing dynamics for two partial
chains, each with N = 8, due to asynchronous rotation around the Ŝz

axis. Both partial chains L and R obey the Hamiltonian (19) where
χ

(0)
L = χ

(0)
R = χ but vR − vL = 100χ . (t1) The Husimi distribution

with respect to coherent states of the partial chains (Q(θ, φ) =
|〈ψL(R)(t )|θ, φ〉|2) is drawn over the Bloch sphere in different colors
at time t1. The collective mean spin (lower bar) is reduced and the
minimal variance (purple bracket) increases when the probability dis-
tributions separate. (t2). At times t ∝ 2π/(vR − vL ), the probability
distributions overlap, maximizing the mean spin and reducing the
minimal variance.

the timescale of the effective OAT model but making the
tunneling more prevalent.

As a result, an increase in effective tunneling will transform
the evolution from the fixed holes scenario to the infinite
tunneling scenario. We examined the scenario of fixed holes in
previous sections. The analytical result for the infinite tunnel-
ing scenario is exactly the OAT model but expectation values
are modulated by the filling factor. This is the lower bound
for spin squeezing. In any intermediate cases with the holes
tunneling spin squeezing would be worse, depending on the
energy scales ratio t/J⊥.

To illustrate this process, we consider a simple statistical
ensemble of Nr realizations where the initial state has a fixed
number of particles N in a lattice of M sites with N < M,

ρ̂(0) = 1

Nr

Nr∑
r=1

⎡
⎣ M⊗

j=1

|�x〉〈�x| j

⎤
⎦, (31)

where over set of on-site random numbers r ∈
{x1, x2, . . . , xNr }. Each state in (31) is

|�x〉 j = θ̄ ( f − x j )|↑〉 j + (1 − θ̄ ( f − x j ))|0〉 j, (32)

where θ̄ (x) is the Heaviside step function and x j ∈ (0, 1] is an
independent random number different for each lattice site. If

214310-6



EXPLORING SPIN SQUEEZING IN THE MOTT … PHYSICAL REVIEW B 109, 214310 (2024)

FIG. 6. The evolution of spin squeezing parameter on the t−J
model (30) induced by anisotropy (a) and inhomogeneous magnetic
field (b) for different values of t/J⊥ indicated in the colorbar and
fixed filling factor f indicated in the panels. For each instance, χ

is estimated as the corresponding parameter of effective models (4),
(6) when N = M = 12. Grey areas indicate the regions between the
semianalytical upper and lower bounds, as explained in the text.
The best squeezing ξ 2

best versus filling factor f is shown in (c) and
(d) when its generation is governed by anisotropy and inhomoge-
neous magnetic field, respectively. To tune the effective tunneling, we
fix J = 1 but change 2Uab/(1 + �) ∈ {24.4J, 50J, 100J}, with J⊥ =
J2/(4Uab),Uaa = Ubb = 2Uab/(1 + �). For the anisotropic case,
� = 0.98, β j = 0, while for the magnetic field case, � = 1, β j =
E (M−1)

M /50 cos ( π

M (M − 1)( j − 1/2)).

x j � f , then the site is occupied by an atom while if x j > f
the site is empty resulting in a hole at that lattice site. In this
way, we represented the presence of holes within the lattice by
the filling factor f . Next, the state corresponding to each re-
alization r is rotated to form the spin coherent state for ϕ = 0
and θ = π/2, |t = 0〉r = e−iŜyπ/2[

⊗M
j=1 |�x〉〈�x| j], and uni-

tary evolution is applied with the t−J model. To tackle the
dynamics, we employ a semianalytical approach. We analyti-
cally determine the dynamics of individual realizations using
microscopic models developed in previous sections but we
treat the statistical ensemble numerically. This set the upper
bound for spin squeezing at a given filling factor.

In Fig. 6, we compare the results for spin squeezing gen-
eration using anisotropy and inhomogeneous magnetic field
when M = 12. Since the effective model for the anisotropic
case (4) lacks a linear term, the addition of multiple config-
urations of partial chains does not destroy squeezing and the
inclusion of effective tunneling immediately provides results
close to the theoretical bound given by the OAT model.2

2In the infinite tunneling limit, the effective model describing the
dynamics is the OAT one with expectation values modulated by the

FIG. 7. The effect of external harmonic trapping potential V̂ext

on the spin squeezing dynamics obtained by numerical simula-
tions from the two-component Bose-Hubbard model (2) in the Mott
insulating phase compared to the effective model (4). M = N =
8, J = 1, Uaa = Ubb = 24.4J, and Uab = 0.99Ua (� = 0.98). Solid
line colors correspond to different values of ε. The perturbation
condition in this case is ε < 1.86J .

This contrasts with the inhomogeneous magnetic field
case, where presence of a linear term in its effective model
(6) illustrates the difficulty in achieving the infinite tunneling
limit in this case. Since each configuration of holes returns
a different velocity, we can picture an overlap between prob-
ability distributions as in Fig. 5, but many of them move at
different speeds.

VI. EFFECT OF EXTERNAL CONFINEMENT

Up to now, we considered a homogeneous system with
open boundary conditions. In this section, we show how the
best squeezing time is tuned by an external harmonic potential
without compromising the squeezing level, up to a certain
threshold. To be specific, we focus our attention on the sim-
plest case with weak anisotropy, � �= 1, without a magnetic
field or holes.

The external trapping potential can be described in the
second quantization form as

V̂ext = ε

M∑
j=1

(
j − M + 1

2

)2(
n̂a

j + n̂b
j

)
, (33)

where ε = mω2/2 is the strength of the effective harmonic
confinement with m being the particle mass and ω the trap-
ping frequency. Typically, the harmonic confinement is much
smaller than the hopping rate, ε/J � 0.01 [40].

In fact, as long as J � Uσσ ′ , ε < min(Uσσ /2 − J,Uab −
J )/(M − 2), double occupancy is unlikely and the effective
OAT model (4) well approximates the dynamics. In Fig. 7,
we illustrate the regimes above and bellow this threshold for
a given set of parameters. For small values of ε the influence
of the trapping potential is weak and only accelerates slightly
the squeezing dynamics. On the other hand, a large ε means

filling factor f . This is an itinerant bosons limit where lattice barriers
lose their role and atoms move freely along the system.
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a promotion of double or larger occupied states, affecting the
squeezing level as well. In the limit case of trapping potential
frequency of the order of individual lattice sites, the indistin-
guishably of individual spins is lost (all bosons located in a
single lattice site), and our description is not valid. In this
limit, the system is effectively bimodal. It is relevant to remark
that at such a trapping strength, the system might actually also
promote particles to higher bands outside the lattice [41].

VII. NONZERO TEMPERATURE

Thermal fluctuations limit the best squeezing achievable
in two-component Bose-Einstein condensates [42,43]. The
same can be expected in the lattice system. To illustrate
the effect we performed exact many-body numerical simu-
lations. We consider the isotropic Heisenberg XXX model,
� = 1, exposed to the weak inhomogeneous field with
ĤB = 
/2

∑M
j=1(eiφ j Ŝ+

j + e−iφ j Ŝ−
j ), φ = 2π/M and periodic

boundary conditions as in Ref. [28]. To observe spin squeez-
ing, we choose the Gibbs state characterized by temperature
T as the initial state of the dynamics:

ρT =
N−1∑
q=0

e−Eq/kBT

Z
|q〉〈q| (34)

next rotated with R̂ = e−iŜyπ/2, namely,

ρ̂R = R̂†ρ̂T R̂ (35)

to create the initial spin coherent state with ϕ = 0 and θ =
π/2. In (34), the ground state is the Dicke state |q = 0〉 =
|N/2, N/2〉 with E0 = 0, and higher energy states are spin
wave states |q〉 given by

|q〉 = 1√
N

N∑
l=1

eiq j2π/N Ŝ−
l |N/2, N/2〉, (36)

with periodic boundary conditions considered for this
specific calculation, and where q = 2πn/N and n =
±1,±2, . . . ,±(N/2 − 1), N/2. The states |q〉 are eigenstates
of the total spin operator and its projection with the energy
Eq = J⊥[1 − cos(2πq/N )]. The thermally populated states
are the lowest energy states of the ĤXXX Hamiltonian which
are spin-wave states. The form (34) is justified for kBT �
|Eq=N/2| when the temperature is much smaller than the largest
energy gap when the occupations of the higher energy states
are negligible.

In Fig. 8, we show numerical results for various tem-
peratures. Admixture of higher energy states influences spin
squeezing dynamics and lowers the best squeezing generated
in the system while the best squeezing time is shortened.
However, as long as the temperature is much smaller than the
smallest energy gap, kBT � Eq=1 the effect is negligible as
demonstrated in Fig. 8. However, a detailed description of this
effect goes beyond this work.

VIII. SUMMARY AND CONCLUSIONS

We study the generation of scalable spin squeezing with
ultra-cold bosonic atoms in optical lattices in the Mott regime.
This is possible through two main mechanisms related to

FIG. 8. An illustration of the effect of nonzero temperature on
the spin squeezing parameter. (a) The variation of the spin squeezing
parameter in time for various temperatures is indicated in the legend.
The smallest energy gap is J⊥(1 − cos(2π/N )) ≈ 0.29J⊥ and 
 =
0.01J⊥. (b) A difference between the best spin squeezing for zero
and nonzero temperatures.

imperfections in the system: anisotropy of contact interactions
and inhomogeneous magnetic fields.

We develop the microscopic theory to predict the dynam-
ics of the spin squeezing parameter in the presence of hole
doping in the simplified scenario when the positions of holes
are fixed. In the more general t−J model, where a hole
moves freely along the chain, the correlations in the system
are bounded between the cases of zero and infinite effective
tunneling. The first case was considered by us in this paper
at the microscopic level. In the second case, the movement
of holes allows correlation of individual spins and, hence, the
system behaves as fully occupied but the expectation values
are modulated by the filling factor f . Additionally, we address
numerically the question of the effect of external confinement
and thermal fluctuations. While external trapping potential
accelerates spin squeezing dynamics, nonzero temperature
diminishes the level of squeezing. However, in the latter case,
the effect is negligible as long as the temperature value is
much smaller than the smallest energy gap.

We believe our analysis sheds more light on the practical
limitations of spin squeezing strategy for quantum technology
tasks with ultracold atomic systems using a quantum gas mi-
croscope, or even trapped ions or molecules. However, we are
aware that a transition from science to technology takes time
and would happen when the quantum advantage outweighs
the complexity of the experiments which are still under very
extensive development. For example in the case of squeezed
light, it took more than forty years for the successful appli-
cation of entanglement-enhanced detection of gravitational
waves [44,45].
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APPENDIX A: DERIVATION OF THE XXZ MODEL
IN THE PRESENCE OF ANISOTROPY

AND INHOMOGENEOUS MAGNETIC FIELD

We start our derivation from the two-component
Bose-Hubbard Model for open boundary conditions with
the addition of an inhomogeneous magnetic field

Ĥ = ĤBH + ĤB, (A1)

where

ĤBH = − J
∑

j,i= j±1

(â†
j âi + b̂†

j b̂i ) + Uaa

2

∑
j

n̂a
j

(
n̂a

j − 1
)

+ Ubb

2

∑
j

n̂b
j

(
n̂b

j − 1
) + Uab

∑
j

n̂a
j n̂

b
j, (A2)

ĤB =
M∑

j=1

β j Ŝ
z
j . (A3)

In fact, it does not have to be a magnetic field, it can be any
other coupling that leads to the position-dependent external
potential. Notice Ŝz

j = (n̂a
j − n̂b

j )/2, so the local magnetic field
is diagonal with respect to the Fock states.

The Bose-Hubbard Hamiltonian commutes with the total
number of particles in each component [ĤBH, N̂σ ] = 0, where
N̂σ = ∑

j n̂σ, j with σ = a, b, but it does not commute with
the occupation numbers n̂a, j, n̂b, j of the jth site, due to the
presence of the hoping terms. We address the case where the
total filling is commensurate with the lattice.

We consider the system in the Mott phase when interaction
dominates over the tunneling strength. In the Mott regime, the
system Hamiltonian is well described by the following model:

Ĥ = −
N−1∑
j=1

[
Jaan̂a

j n̂
a
j+1 + Jbbn̂b

j n̂
b
j+1 + J−

abn̂a
j n̂

b
j+1

+ J+
abn̂b

j n̂
a
j+1 + J⊥

1

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1)

]
+ ĤB, (A4)

where

Jaa = 4J2Uaa

U 2
aa − (β j − β j+1)2

, (A5)

Jbb = 4J2Ubb

U 2
bb − (β j − β j+1)2

, (A6)

J−
ab = 2J2

Uab − (β j − β j+1)
, (A7)

J+
ab = 2J2

Uab + (β j − β j+1)
, (A8)

J⊥ = 4J2Uab

U 2
ab − (β j − β j+1)2

, (A9)

when taking into account the inhomogeneous field and after
performing a SW transformation with the tunneling term as
a perturbation. The resulting system Hamiltonian can also be
rephrased as

Ĥ = −
N−1∑
j=1

[
JzŜ

z
j Ŝ

z
j+1 + J⊥

1

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1) − JN

4

]

+ BŜz +
∑

j

h j Ŝ
z
j − h̄

(
Ŝz

1 − Ŝz
N

) + ĤB, (A10)

where

Jz = Jaa + Jbb − J−
ab − J+

ab, (A11)

JN = Jaa + Jbb + J−
ab + J+

ab, (A12)

B = Jbb − Jaa, (A13)

h j = − J2(β j − β j+1)

U 2
ab − 1

4 (β j − β j+1)2
+ J2(β j−1 − β j )

U 2
ab − 1

4 (β j−1 − β j )2
,

(A14)

h̄ = − J2(βN − β1)

U 2
ab − 1

4 (βN − β1)2 . (A15)

We found numerically the influence of the h̄, h j terms is
negligible if the difference β j − β j+1 � Uab and ĤB dom-
inates the perturbation of the XXZ model. In numerical
calculations, we will keep using Eq. (A10) but in a further
analysis, we simplify the model in two main scenarios while
also discarding these contributions and the homogeneous
magnetic field BŜz.

In the first case, we can take β j = 0; ∀ j, leading to the
simple XXZ model in (3),

Ĥ = ĤXXZ = −J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + �Ŝz

j Ŝ
z
j+1 − 1

4

)
,

(A16)

where J⊥ = 4J2/Uab and the anisotropy parameter � =
4J2(U −1

aa + U −1
bb − U −1

ab )/J⊥. This can be further decomposed
into an XXX model with perturbative term such that

Ĥ = ĤXXX + Ĥz, (A17)
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where

ĤXXX = − J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 − 1

4

)
,

(A18)

Ĥz = − J⊥(� − 1)
N∑

j=1

Ŝz
j Ŝ

z
j+1. (A19)

The calculation of the resulting effective model is described
in Appendix B.

On the other hand, by choosing U = Uaa = Ubb = Uab and
U � (β j − β j+1); ∀ j one easily obtains an XXX model with
the inhomogeneous magnetic field.

Ĥ = ĤXXX + ĤB. (A20)

Excited states of the XXX model are given by the spin wave
states [29], for which the ĤB term is a generator of. This leads
to the effective model in (6). See Appendix C for more details.

APPENDIX B: DERIVATION OF THE EFFECTIVE MODEL
FROM ANISOTROPY

The initial state for unitary evolution is the phase state

|θ, ϕ〉 = e−iϕŜz e−iθ Ŝy

N⊗
j=1

|a〉 j, (B1)

which can be conveniently expressed in terms of the Dicke
basis for maximal spin S = N/2, namely,

|θ, ϕ〉 =
N/2∑

m=−N/2

(
N

m + N/2

)1/2

(cos θ/2)N/2−m

× (eiϕ sin θ/2)N/2+m|m〉. (B2)

In the above representation, |m〉 is the Dicke state as Ŝ2|m〉 =
S(S + 1)|m〉 and Ŝz|m〉 = m|m〉, and Ŝ2 and Ŝz are collective
operators.

We consider the effective model describing the dynamics
in the Dicke manifold where the initial state is localized. We
derive the effective model in a perturbative way. The unper-
turbed Hamiltonian is the XXX model (A18) and it is weakly
coupled to the anisotropy term Ĥz (A19).

When the coupling is weak compared to the energy of the
spin exchange J⊥, the dynamics of the initial spin coherent
state |θ, ϕ〉 governed by the full Hamiltonian Ĥ = ĤXXX + Ĥz

projected over the Dicke manifold can be well approximated
using SW transformation [28,29] where the coupling Ĥz is
treated as a perturbation.

The dominant zero-order term Ĥ (0)
eff is determined by a

projection of the coupling term over the Dick states and gives
the following matrix representation:

〈m′|Ĥz|m〉 = −J⊥(� − 1)

(
− N

4(N − 1)
+ m2

N − 1

)
δm′,m.

(B3)

Using the representation of the Ŝz operator, we obtain

Ĥ (0)
eff = −J⊥

� − 1

N − 1
Ŝ2

z + const. (B4)

APPENDIX C: DERIVATION OF THE EFFECTIVE MODEL
FROM INHOMOGENEOUS MAGNETIC FIELD

A weak inhomogeneous magnetic field ĤB (A3) can gen-
erate spin squeezing when added to the isotropic XXX
Heisenberg model (A18). In fact it can be any other coupling
which leads to the above form, also in different directions,
e.g., x or y.

To see this, one needs to calculate the second-order term
Ĥ (2)

eff in perturbation, which matrix elements are defined as

〈m′|Ĥ (2)
eff |m〉 = −

∑
m′′,q

〈m′|ĤB|m′′, q〉〈m′′, q|ĤB|m〉
Eq

. (C1)

Details about the SW transformation and its application to the
Heisenberg XXX model with the coupling can be found in
Ref. [28]. In the above equation states |m, q〉 are spin-wave
states which are eigenstates of the isotropic Heisenberg model
(A18) for open boundary conditions [29], namely,

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉, (C2)

where cN/2,±m =
√

N−1
(N/2∓m)(N/2∓m+1) . The sign ± in Eq. (C2)

for |m, q〉 corresponds to two equivalent definitions of the
spin waves in terms of the on-site spin raising and lowering
operators Ŝ±

j acting on the Dicke states |m〉. Furthermore, the

coefficients featured in Eq. (C2) are p(q)
j =

√
2
N cos[ π

N ( j −
1
2 )q], with q = 1, . . . , N − 1. The corresponding eigenen-
ergies Eq of the isotropic model (A18) read Eq = J⊥
[cos( π

N q) − 1].
To calculate the form of the second-order term Ĥ (2)

eff ,
it is useful to use the following commutation relations
[Ŝz

j, Ŝn
−] = −nŜ−

j Ŝn−1
− , and [Ŝz

j Ŝ
z
j+1, Ŝn

−] = −n(Ŝ−
j+1Ŝn−1

− Ŝz
j +

Ŝ−
j Ŝn−1

− Ŝz
j+1) + n(n − 1)Ŝ−

j Ŝ−
j+1Ŝn−2

− . They allow writing the

action of ĤB on the Dick state |m〉 in the convenient form

ĤB|m〉 =
∑

j

β j Ŝ
z
j |m〉 = −

√
S − m

S + m + 1

∑
j

β j Ŝ
−
j |m + 1〉,

(C3)

to get the matrix elements in (C1).
A term coupling directly the Dicke states with the spin

wave states of q = 0 proportional to
∑

j β j will appear in
〈m′|ĤB|m′′, q〉. However, Eq=0 = 0, meaning we would have
an infinite term. To correct this, we simply have to make this
sum zero by adding and subtracting a term to ĤB so that

ĤB =
N∑

j=1

(β j − v)Ŝz
j + vŜz = ĤB′ + vŜz, (C4)

where v = 1/N
∑

j β j . This guarantees
∑

j (β j − v) = 0, so
if in the previous analysis we substitute ĤB by ĤB′ we can
correctly calculate (C1).
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FIG. 9. (a) Variation of spin squeezing parameter ξ 2 dynamically generated using the XXX model with a randomly generated inhomoge-
neous magnetic field (A18) (solid lines) and the effective model (6) (dashed lines). Colors indicate the maximal magnitude of the magnetic field
with respect to the smallest energy gap of the spin wave states. Since χM ∝ max |β j |2, the best squeezing time tbest ∝ 1/|χM | will be faster the
larger this value is, in principle. (b) The perturbation condition for each spin wave state is max |β j | � E (q)

M . The effective model approximates
the exact dynamics more accurately if the fidelity with spin wave states of quasi-momenta q (|c(q)

M |/ max |β j |) is negligible when the perturbation
condition is not fulfilled (compare with (a)). (c) Due to the functional form of the energy gap, the contributions of smaller q in χM = ∑

q χ
(q)
M

tend to dominate the squeezing timescale. N = M = 16, J = 1, Uaa = Ubb = Uab = U = 24.4J, and J⊥ = 4 J2

U , E (q)
M = J⊥(1 − cos(πq/M )).

The final expression for the effective Hamitonian Ĥ (2)
eff will

then be

Ĥ (2)
eff = χ

(
Ŝ2 − Ŝ2

z

) + vŜz,

where χ = 1

N − 1

N−1∑
q=1

∣∣∑
l p(q)

l (βl − v)
∣∣2

Eq
. (C5)

This effective model can even be generated using a ran-
dom magnetic field which excites many spin wave states, as
demonstrated in Fig. 9.

APPENDIX D: DYNAMICS DRIVEN BY χS2
z + vSz

Consider the unitary evolution of the initial state

|�(t = 0)〉 =
∑

m

cm|S, m〉 (D1)

with the Hamiltonian

H = χ
(
Ŝ2 − Ŝ2

z

) + vŜz, (D2)

namely,

|�(t )〉 =
∑

m

cmeiχm2t−ivmt |S, m〉 (D3)

where we omitted the constant phase factor.
One can express the evolution of spin operators in terms of

evolution given by the pure OAT model when v = 0. Simple

algebra shows that the first moments read

〈Ŝ+〉 = eivt/h̄〈Ŝ+〉OAT, (D4)

〈Ŝ−〉 = e−ivt/h̄〈Ŝ+〉OAT, (D5)

〈Ŝx〉 = cos(vt/h̄)〈Ŝx〉OAT − sin(vt/h̄)〈Ŝy〉OAT, (D6)

〈Ŝy〉 = cos(vt/h̄)〈Ŝy〉OAT + sin(vt/h̄)〈Ŝx〉OAT, (D7)

〈Ŝz〉 = 〈Ŝz〉OAT = 0, (D8)

where for OAT, we have

〈Ŝx〉OAT = S cos2S−1(χt/h̄), (D9)

〈Ŝy〉OAT = 〈Ŝz〉OAT = 0. (D10)

On the other hand, the second moments are

〈Ŝ2
+〉 = ei2vt/h̄〈Ŝ2

+〉OAT, (D11)

〈Ŝ2
−〉 = e−i2vt/h̄〈Ŝ2

−〉OAT, (D12)

〈Ŝ+Ŝ−〉 = 〈Ŝ+Ŝ−〉OAT, (D13)

〈ŜyŜz〉 = cos(vt/h̄)〈ŜyŜz〉OAT + sin(vt/h̄)〈ŜxŜz〉OAT

= cos(vt/h̄)〈ŜyŜz〉OAT, (D14)
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〈ŜxŜz〉 = cos(vt/h̄)〈ŜxŜz〉OAT − sin(vt/h̄)〈ŜyŜz〉OAT

= − sin(vt/h̄)〈ŜyŜz〉OAT, (D15)〈
Ŝ2

x

〉 = 1
2 (1 + cos(2vt ))

〈
Ŝ2

x

〉
OAT + 1

2 (1 − cos(2vt ))
〈
Ŝ2

y

〉
OAT,

(D16)〈
Ŝ2

y

〉 = 1
2 (1 + cos(2vt ))

〈
Ŝ2

y

〉
OAT + 1

2 (1 − cos(2vt ))
〈
Ŝ2

x

〉
OAT,

(D17)〈
Ŝ2

z

〉 = 〈
Ŝ2

z

〉
OAT, (D18)

〈ŜxŜy〉 = cos 2vt〈ŜxŜy〉OAT + 1
2 sin 2vt

(〈
Ŝ2

x

〉
OAT − 〈

Ŝ2
y

〉
OAT

)
= 1

2 sin 2vt
(〈

Ŝ2
x

〉
OAT − 〈

Ŝ2
y

〉
OAT

)
, (D19)

while the ones derived for the OAT model are〈
S2

x

〉
OAT = S/4[(2S − 1) cos2S−2(2χt ) + (2S + 1)], (D20)〈

S2
y

〉
OAT = −S/4[(2S − 1) cos2S−2(2χt ) − (2S + 1)], (D21)

〈S+S− + S−S+〉OAT = 2
(〈

S2
x

〉
OAT + 〈

S2
y

〉
OAT

)
, (D22)

〈S2
+ + S2

−〉OAT = 2
(〈

S2
x

〉
OAT − 〈

S2
y

〉
OAT

)
, (D23)

〈S2
+ − S2

−〉OAT = 4i〈SxSy〉OAT = 0, (D24)

〈SxSz〉OAT = 0, (D25)〈
S2

z

〉
OAT = S/2, (D26)

〈SySz〉OAT = S(2S − 1)/2 cos2S−2(χt ) sin(χt ). (D27)

APPENDIX E: GENERALIZATION TO ANY NUMBER
OF HOLES AND CONFIGURATIONS

The generalization of the two-hole analysis to an arbitrary
number of holes and their configurations is straightforward. In
general, holes are located between occupied sites that consti-
tute partial chains. All partial chains are independent as long
as the positions of holes are fixed.

Let us start with the Dicke state for maximal magnetization
written as the product state

|N/2, N/2〉{h} =
⊗

n

∣∣Ln/2, Ln/2〉
⊗
k∈{h}

∣∣0〉k, (E1)

where {h} describes the set of fixed locations of Nh holes in
the chain having M sites, n is the index numerating individ-
ual partial chains in the system and Ln is the corresponding
number of spins. The total number of spins in the whole chain
is N = M − Nh = ∑

n Ln. We will omit the empty sites |0〉k

when describing the states in the further part of the text.
The initial spin coherent state is a product of coherent states

of partial chains

|t = 0〉{h} =
⊗

n

|n〉, (E2)

where
|n〉 = e−iπ Ŝy,n/2|Ln/2, Ln/2〉, (E3)

for θ = π/2 and φ = 0.

The further unitary dynamics is separable and each partial
chain evolves independently

|ψ (t )〉{h} =
⊗

n

Ûn|n〉, (E4)

meaning the state at any point in time can be described as a
separable state of partial chains.

In the case of spin squeezing generation by anisotropy,
the Hamiltonian described in Sec. V A extends, and for each
partial chain n reads

Ĥ (0)
eff,n = −χ (0)

n Ŝ2
z,n, (E5)

with χ (0)
n = J⊥(� − 1)/(Ln − 1). When the spin squeezing is

generated via the inhomogeneous field with � = 1, as dis-
cussed in Sec. V B, the effective OAT-like model for each
partial chain is described effectively by the following Hamil-
tonian:

Ĥeff,n = χnŜ2
z,n + vnŜz,n, (E6)

where

χn = 1

Ln − 1

Ln−1∑
q=1

∣∣c(q)
n

∣∣2

E (q)
n

, (E7)

vn = 1

Ln

ln+Ln−1∑
l=ln

βl , (E8)

c(q)
n =

√
2

Ln

ln+Ln−1∑
l=ln

p(q,n)
l (βl − vn), (E9)

where ln is the location of the first spin in the partial chain and
E (q)

n = J⊥(1 − cos(πq/Ln)).
Finally, to calculate the spin squeezing parameter ξ 2 one

needs to calculate the first and second moments of the spin
operators to obtain their covariances. Expectation values of an
on-site linear operator can be described as a sum over all par-
tial chains, 〈X̂ 〉{h} = ∑

n 〈X̂ 〉n while for a product of two linear
operators reads 〈X̂Ŷ 〉{h} = ∑

n 〈X̂Ŷ 〉n + ∑
n

∑
n′ �=n 〈X̂ 〉n〈Ŷ 〉n′ .

From these results, one obtains �(X̂Ŷ )2
{h} = ∑

n �(X̂Ŷ )2
n. The

effective models for partial chains, as well as their separation,
allow approximation of the dynamics of spin squeezing pa-
rameter by using analytical expressions shown in Appendix D
valid for any N and M.

APPENDIX F: SWS WITH HOLES

One can construct the spin-wave states about these spin
states separated by holes for maximal spin. When considered
in the Bethe basis:

|l〉h = Ŝ−
l |S = N/2, m = N/2〉h (F1)

the spin wave states can be defined in the following way for
the Nh holes

|n, qn〉 =
M∑

l=1

p(qn )
l |l〉h, (F2)
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FIG. 10. Comparison of spin squeezing parameter dynamics among combinations two of chains of M = N = 8 particles with Hamiltonian
(F6) with same value of χn (χ1 = χ2 = χ ) but different values of vn, indicated in the title of each panel.

where n numerates partial chains, and they are eigenstates of
the ĤXXX Hamiltonian when

p(qn )
l =

√
2

Ln
cos

[
π

Ln
(l − (ln − 1/2))qn

]
,

l ∈ (ln, ln + Ln − 1) (F3)

p(qn )
l = 0 otherwise (F4)

with ln being the position of the first spin in the partial chain.
One can show that eigenenergies are

Eqn = J⊥

[
1 − cos

(
π

Ln
qn

)]
, (F5)

where Ln is the length of individual sub-chain (number of
spins constituting the partial chains), while the corresponding
quantum number of quasi-momentum qn ∈ [1, Ln − 1].

Thus ĤXXX + ĤB leads through the second-order processes
to the effective pure OAT model in each partial chain

Ĥ (2)
eff,n = −χn

(
Ŝ2

n − Ŝ2
z,n

) + vnŜz,n, (F6)

where

χn = 1

Ln − 1

Ln−1∑
qn=1

∣∣c(q)
n

∣∣2

E (q)
n

,

c(q)
n =

√
2

Ln

ln+Ln−1∑
l=ln

p(q,n)
l (βl − vn),

vn = 1

Ln

ln+Ln−1∑
l=ln

βl ,

and one needs to set ln = 1 in p(q,n)
l . Examples of various

dynamics are presented in Fig. 10.
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Chapter 8

Entanglement of squeezed states
under occupation defects

The schemes we have shown involving the Mott insulating phase where we
excite spin wave states via a small perturbation are very effective at reproduc-
ing models akin to OAT and TACT. The absence of double occupied states in
this mapping prevents particle losses due to collisions. Moreover, the proposed
schemes do not involve complicated setups and are sufficiently resilient to small
changes in the system parameters. In the previous chapter we also developed
a model for the case of holes pinned in different locations of the lattice. We
also explored the t–J model in the context of spin squeezing, where we allowed
particles to move in the lattice. The study of dynamics in the presence of holes
is relevant since, in an experiment, we might have little control on the number
of particles that survive the preparation stage. An aspect of the spin squeezing
parameter which we have yet to explore is its utility as an entanglement wit-
ness. We may then question how holes affect correlations and entanglement in
the context of spin squeezing. In this work we propose a two-site Bell correla-
tor to certify entanglement, which can be conveniently expressed in terms of
the normalized mean spin and the spin squeezing parameter. The correlator
accounts for occupation defects and is well bounded by limiting cases obtained
through a toy model. The occupation defects under study appear either at the
state preparation stage or the measurement stage.

The results shown in this chapter are the result of our own research and
the pre-print of the research article is available as:

T. H. Yanes, Y. Bamaara, A. Sinatra, and E. Witkowska, Bounds on de-
tection of Bell correlations with entangled ultra-cold atoms in optical lattices
under occupation defects, (Sept. 4, 2024) http://arxiv.org/abs/2409.02873
(visited on 09/08/2024), pre-published.
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8.1. BELL CORRELATOR CHAPTER 8. OCCUPATION DEFECTS

8.1 Two-body Bell Correlator

While we could use standard definitions of the spin squeezing parameter to
detect negative pairwise correlations [9] or rely on a set of generalized spin
squeezing inequalities [72], we instead opt for a data-driven approach to con-
struct Bell correlators based on local measurements [37]. Bell inequality viola-
tion represents the most robust scheme for entanglement certification, avoiding
assumptions on physical nature and degrees of freedom to be measured or cal-
ibration of measurement.

We consider the M sites of our lattice as separate subsystems where at
least two observables α are measured, each having d possible outcomes. A
Bell experiment checks if correlations can be provided through a local hidden
variable theory, meaning the obtained results depend on local correlations from
the past. To check this, we may choose an arbitrary observable for each of the
M subsystems α = {αj}Mj=1 to calculate probabilities of the measurement
outcomes r = {r(j)}Mj=1. The expected pair probability distribution is given
by

P
(LV)
M (r|α) =

∫
dλ q(λ)

M∏

j=1

P (j)(r(j)|αj , λ). (8.1)

Instead of working with eq. (8.1), we equivalently consider one- and two-
body correlations summed over the permutations of the subsystems as

Mα =

M∑

j=1

〈
r(j)α

〉
, (8.2)

Cαβ =
∑

i,j ̸=i

〈
r(i)α r

(j)
β

〉
, (8.3)

C̃αβ = Cαβ −MαMβ. (8.4)

We can use these correlations to build up a vector M⃗ and matrix C̃ to represent
the non-locality condition as a convex optimization problem. Then, given a
positive-semi-definite matrix A ⪰ 0 and a vector h⃗, we find

L(A, h) = tr(AC̃) + h⃗ · M⃗ + Emax ≥ 0, (8.5)

where Emax is the classical limit, as long as M⃗, C̃ are compatible with a local
hidden variable theory. If we introduce data corresponding to a spin-squeezed
state in the proposed convex optimization problem, we may obtain [37]

L = C̃00 + C̃11 − C̃01 − C̃10 −M0 −M1 +M ≥ 0, (8.6)

While this inequality was originally proposed for systems with two possible
measurement outcomes, we numerically found the convex optimization that

114



CHAPTER 8. OCCUPATION DEFECTS 8.1. BELL CORRELATOR

yields eq. (8.6) from eq. (8.5) is also satisfied with our proposed three possible
measurement outcomes rj ∈ {−1/2, 0,+1/2}.

To recover the collective character of the spin squeezing parameter in the
Bell correlators, we choose all local measurements to be along the same direc-
tions, retrieving coherent measurement expressions. Our two chosen measure-
ment settings α ∈ {0, 1} are

Ŝ0,1
j = cos θŜn

j ± sin θŜmin
j , (8.7)

where n is the mean spin direction and min is the minimal variance direction
of the state. While some local measurements survive this choice of settings,
they can be effectively replaced with basic information about the initial state
of the system, as we show later. Moreover, we implicitly assume that any local
measurement outcome outside the eigensubspace of eigenvalues r(j) = ±1/2 is
treated as if the site was empty.

We can introduce eq. (8.7) into eq. (8.6) and optimize over the change
of variable x = cos θ, as the inequality takes the form of a simple quadratic
polynomial. Through this approach we derive a general two-site Bell correlator
which only depends on first and second moment results of the form

L
(1)
opt =M − M2

n

4(M2
min − Cmin,min)

− 4(M2
min − Cmin,min), (8.8)

where we considered the averages along the mean spin and squeezing directions,

Mn =
M∑

j=1

⟨Ŝn
j ⟩ , (8.9)

Mmin =
M∑

j=1

⟨Ŝmin
j ⟩ , (8.10)

as well as the two-site correlations along the squeezing direction

Cmin,min =

M∑

i,j ̸=i

⟨Ŝmin
i Ŝmin

j ⟩ . (8.11)

We can rewrite this definition with collective expectation values by in-
troducing the average number of unit-filled site M̄ ≡ ∑

iTr(ρi), which is a
time-independent on-site measurement. This is because we do not consider
the generation of occupation defects during dynamics, meaning the Hamilto-
nian maintains the different occupation sectors separated. In such case, we
obtain

L
(1)
opt =M − ⟨Ŝn⟩2

M̄ − 4(∆Ŝmin)2
− (M̄ − 4(∆Ŝmin)

2), (8.12)

where | ⟨Ŝn⟩ | ≤ |M̄ − 4(∆Ŝmin)
2|; otherwise we have L(1)

opt =M − 2| ⟨Ŝn⟩ |.
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The result can be expressed in terms of the spin squeezing parameter ξ2

and the normalized mean spin direction v = 2 ⟨Ŝn⟩/N as

L
(1)
opt =M − N

4

Nv2

M̄ −Nξ2v2
− (M̄ −Nξ2v2). (8.13)

8.2 Occupation defects and toy model

This data-driven approach to derive our target Bell correlator becomes relevant
when we include measurement conditions in our experiment. In particular, we
explore the effects of occupation defects on the system. To demonstrate the
usefulness of the proposal, we assume two possible scenarios which provide two
different sources of occupation defects: particle losses at the preparation stage
and double occupations at the measurement stage. In the former scenario,
state preparation is imperfect and we loose particles with a given probabil-
ity before the start of the dynamics. In the latter scenario, preparation and
dynamics are as expected but we loose single occupancy per site at the mea-
surement stage.

To have a reference of the entanglement limit in these different scenarios,
we develop a toy model that assumes complete decoupling between the internal
degrees of freedom (spin) and the external ones (spatial distribution). While
this is a broad simplification, we observe the toy model closely benchmarking
the correlation limit of our models under occupation defects. This treatment
requires an adaptation of the Bell correlator to each of the scenarios with the
toy model, based on the particular constrains on entanglement they impose.

For instance, the particle losses scenario yields the toy model two-site Bell
correlator

L(V)

M
= 1− p(N − 1)

N − p

⟨Ŝn⟩2SS
N
[
N − 4(∆Ŝmin)2SS

] − p(N − p)

N − 1

[
1− 4(∆Ŝmin)

2
SS

N

]
,

(8.14)
where SS signifies expectation values of a purely squeezed state of N parti-
cles, p is the probability of finding a given site at unit-filling, and N = pM .
Equation (8.14) can be obtained from eq. (8.12) by introducing

N =pM,

M̄ =pM = N

⟨Ŝn⟩ = ⟨Ŝn⟩SS ,

(∆Ŝm)2 =
N − p

N − 1

[
(∆Ŝm)2SS − N

4

]
+
N

4
.

Equation (8.14) holds when N ≤M , that is p ≤ 1. The asymptotic behaviour
in the large particle limit, N → ∞, sets a fixed limit on the Bell correlations
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with respect to the probability p. Values above the critical probability pc are
unable to provide non-local correlations. In this case, limN→∞ pc = 5/4.

Instead, the measurement defects scenario yields the following result

L(VI)

M
= 1− ⟨Ŝn⟩2SS

N
[
N − 4(∆Ŝmin)2SS

] − p2

[
1− 4(∆Ŝmin)

2
SS

N

]
, (8.15)

where N =M . Equation (8.15) can be obtained from eq. (8.12) by introducing

N =M,

M̄ =pM

⟨Ŝn⟩ =p ⟨Ŝn⟩SS ,

(∆Ŝm)2 =
∑

i,j

⟨ŝimŝjm⟩+ ⟨Ŝm⟩2 =
∑

i ̸=j

⟨ŝimŝjm⟩SS +
M̄

4
+ ⟨Ŝm⟩2

=p2
[
(∆Ŝm)2SS − M

4

]
+ p

M

4
,

In this case, limN→∞ pc =
√
3/2.

8.3 Realistic implementations

We exemplify the particle losses scenario in the Mott insulating phase through
two different sources of squeezing given an average filling factor. As seen in
chapter 7, we can generate OAT dynamics through a weak anisotropy of the
contact interactions such that the effective Hamiltonian of a partial chain n
isolated by empty sites is given by

Ĥ
(0)
eff,n = −χ(0)

n Ŝ2
z,n. (8.16)

Alternatively, if we implement a weak inhomogeneous magnetic field, we may
obtain the effective Hamiltonian

Ĥeff,n = χnŜ
2
z,n + vnŜz,n. (8.17)

We demonstrate numerically that the presence of a linear term in the effec-
tive Hamiltonian, usually negligible in the unit-filling regime, greatly affects
the generation of non-local correlations, as we showed previously with spin
squeezing in chapter 7.

We also compare the obtained two-site correlator with an M-site correlator
capable of detecting GHZ states [77] to benchmark its usefulness. While the
M-site correlator is sensitive to non-local correlations up to p > pc = 1/

√
2 in

the large particle number limit, it requires larger time scales (χt = π/2) and
experimentally challenging correlation measurements involving all sites of the
lattice. On the contrary, the two-site correlator shows optimal detection at
the best squeezing time scale (χt ≪ π/2) and the correlation measurements
are only two-body collective measurements.
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Bell non-locality stems from quantum correlations effectively identified using inequalities. Spin
chains, simulated with ultra-cold atoms in optical lattices, Rydberg atoms in tweezer arrays, trapped
ions, or molecules, allow single-spin control and measurement. Therefore, they are suitable for
studying fundamental aspects of these correlations and non-locality. Occupation defects, such as
vacancies or multiple atoms occupying a single site due to imperfect system preparation, limit the
detection of Bell correlations. We investigate their impact using a simplified toy model parameterized
by the probability of a site being singly occupied. We derive the corresponding Bell inequality and
identify the smallest probability that establishes a lower bound for detecting Bell correlations. We
relate the bound to two physical parameters leading to defects in occupations: non-zero temperature
and filling factor, focusing on entangled ultra-cold atoms in optical lattices. Finally, we numerically
validate the predictions of the toy model by full many-body simulations.

I. INTRODUCTION

Quantum mechanics introduced groundbreaking con-
cepts of non-local correlations and entanglement that
challenged well-established principles of classical physics,
including realism, causality and locality [1]. A classical
picture can be recovered at the price of introducing lo-
cal hidden variables, and the corresponding local hidden
variable (LV) theories are shown to satisfy Bell inequali-
ties [2]. Quantum correlations that violate Bell inequal-
ities are inconsistent with LV theory and are, therefore,
referred to as non-local [3].

The most robust method for entanglement certification
is provided by violating Bell’s inequalities, as it avoids
assumptions about the physical nature and degrees of
freedom to be measured or the calibration of measure-
ments [4]. This is known as the device-independent sce-
nario, which is a powerful resource in many quantum
information tasks, such as self-testing [5], randomness
amplification and expansion [6, 7], quantum key distribu-
tion [8–10], and quantum sensing and metrology [11, 12].
Recent experimental demonstrations have employed vari-
ous platforms, including entangled photons [13–15], spins
in nitrogen-vacancy centers [16], superconducting cir-
cuits [17], pairs of Josephson phase qubits [18], and neu-
tral and ultra-cold atoms [19, 20]. Many studies have con-
centrated on few-particle scenarios; however, non-local
correlations also naturally emerge in quantum many-
body systems [21].

Atom assembly in optical lattices and optical tweezer
arrays [22–24], as well as trapped ions and molecules [25,
26], offer excellent approaches for studying many-body

* These authors contributed equally to this work

entanglement, with capabilities for single-atom prepa-
ration, control, and detection. In the above-mentioned
platforms, entanglement can be generated dynamically
from the initial coherent state well approximated by the
one-axis twisting (OAT) model [27] where spin-squeezed
and GHZ states are produced. Given the control and lo-
cal measurements possible in such architectures and their
scalability, the systems offer the powerful setup to gen-
erate and study fundamental aspects of Bell correlations
and non-locality, enabling the exploration of quantum
information concepts. Imperfections, however, e.g. in
system preparation, may introduce occupation defects,
limiting Bell inequalities’ application and entanglement
certification.

In this paper, we study the role of occupation de-
fects in detecting Bell correlations focusing on N two-
level bosonic atoms in a spin-entangled state distributed
among M sites of an optical lattice, such that N ≤ M .
In the Bell scenario, we consider the measurement of two
local collective spin observables at each lattice site where
0, 1 or 2 atoms are present. For each measurement result
there are three possible outcomes: ±1/2 when the site
is singly occupied, and 0 whenever a defect such as an
empty or doubly occupied site is present, as illustrated
in Fig. 1. We introduce a simplified toy model where
the atoms’ internal and external degrees of freedom are
decoupled. The dynamics of the internal spin degrees
of freedom, including possible entanglement among the
spins, is assumed to be given by the OAT model with
N atoms. The external degrees of freedom are parame-
terized by the probability p of having a single occupied
site allowing vacant, double, etc. occupancy sites when
p < 1. We derive the corresponding p-parameterized
Bell inequalities based on M - and two-sites Bell cor-
relations [28, 29]. We analytically estimate the lowest
(critical) value of the probability p for violation of Bell
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FIG. 1. A chain of M spins is created by two-level ultra-cold
atoms loaded into an optical lattice. Bell scenario considered:
on each of M subsystems (sites) two different measurement

are performed ŝ
(j)
α , with α = 0, 1, locally leading to three

measurement outcomes r
(j)
1 , r

(j)
2 , r

(j)
3 ∈ {−1/2,+1/2, 0}. The

M-site Bell correlator is tailored for GHZ states, while the
two-site Bell correlator is taliored for spin-squeezed states.

inequality. We obtain pc ≈ 1/
√
2 for the M -site Bell

correlations. For the two-site Bell correlations, we ob-
tain pc = 4/5 and pc =

√
3/2 when N = pM < M and

N = M , respectively. These results are general and can
be relevant for any platform where individual address-
ing of spins is possible [30–37], for example as in recent
experiments using an array of trapped ions [38] and Ry-
dberg atoms [39, 40] demonstrating generation of entan-
glement in terms of scalable spin-squeezing with tens of
spins.

We explore the predictions of the toy model by per-
forming full many-body numerical simulations of ultra-
cold atoms in an optical lattice. We consider two distinct
protocols for Bell correlations generation, which differ by
the source of the occupation defects.

In the first one, Bell correlations between individ-
ual atoms are generated in the Mott insulating regime
via a weak inhomogeneous magnetic field or interaction
anisotropy [41, 42], and the considered occupation de-
fects are vacant sites (holes). The probability p of single
occupancy sites is the filling factor f = N/M . Our nu-
merical simulations confirm predictions of the toy model
of the lower bound on the filling factor concerning the
detection of the M -sites Bell correlations. However, the
detection of the two-site Bell correlations in the lattice
system is hindered whenever f < 1 for fixed positions of
holes. The movement of holes turned out to be crucial

to lower the numerical bound on the filling factor, allow-
ing for the detection of two-site Bell correlations up to
f ≈ pc, as predicted by the toy model.
In the second protocol, entanglement is generated in

the superfluid regime using atom-atom interactions [28,
32, 43] and next is transferred to the Mott phase by in-
creasing the lattice height. The main source of defects is
imposed by non-zero temperature T of an initial sample
when N = M . We relate analytically the probability p
with the initial temperature T of the system in the limit
of an isoentropic transformation that leaves the system
in thermal equilibrium at each moment. In this case,
we determine analytically the upper bound for the initial
temperature corresponding to pc below which M - and
two-site Bell correlations can be detected.
The paper is organized as follows: In Secs. II and III,

we provide the theoretical framework for the Bell sce-
nario and toy model. This is applied to the system com-
posed of ultra-cold atoms in an optical lattice presented
in Sec. IV via analytical and numerical approaches. In
Secs. V and VI we present the results for the first and sec-
ond protocols, respectively, discussing the role of defects
introduced by holes and non-zero initial temperature of
the system. We conclude with further discussion and
outlook in Sec. VII.

II. BELL SCENARIO

We considerM spatially separated subsystems labelled
i = 1, ...,M , sharing a quantum M -partite state de-
scribed by the density operator ρ̂. In each subsystem,
k observables labeled α = 0, ..., k − 1, can be measured,
each having d possible outcomes. A Bell experiment, as
shown in Fig. 1, involves choosing an arbitrary observ-
able for each of the M subsystems α = {αi}Mi=1, and
recording the measurement results r = {r(i)}Mi=1. The
goal is to determine the M -partite probability distribu-
tion PM (r|α) for the outcomes r given the settings α for
all possible choices of settings α. In the LV theory [44],
any probability distribution PM (r|α) can be written as

P
(LV)
M (r|α) =

∫
dλ q(λ)

M∏

i=1

P (i)(r(i)|αi, λ). (1)

The local nature of this equation resides in the fact that
the probability distribution of the outcomes for any given
subsystem i depends only on the setting within that same
subsystem i. The correlations between different subsys-
tems here take their origin from a dependence relation
that was established in the past, when the state ρ̂ was
generated. This dependence can be fully described by
some variable λ, which may be random with a probabil-
ity distribution q(λ), affecting simultaneously all the M
subsystems. Furthermore, if we consider a local realistic
model where the measurement result r(i) is deterministi-
cally determined by the setting αi and the variable λ in
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each subsystem i, we have

P (i)(r(i)|αi, λ) = δr(i),r(i)(λ). (2)

In the Bell experiment described above, the possibil-
ity of decomposing the measured probability distribution
PM (r|α) into the form (1) constitutes the locality condi-
tion for correlations between the M subsystems under
study. Conversely, if the measured probability distri-
bution PM (r|α) cannot be written in the form (1), the
correlations present in the system are non-local. This
decomposition corresponds to the most general locality
condition, as defined by Bell. In practice, as we will see
later, this condition is often formulated as a Bell inequal-
ity.

In this paper, we consider an optical lattice with M
sites, each containing zero, one or two two-level atoms.
Each atom with two internal states a and b is an effective
spin 1/2, and we can express local collective spins in the

quantized form as ŝ
(j)
x = (ŝ

(j)
+ + ŝ

(j)
− )/2, ŝ

(j)
y = (ŝ

(j)
+ −

ŝ
(j)
− )/(2i), ŝ

(j)
z = (â†j âj − b̂†j b̂j)/2 with ŝ

(j)
+ = â†j b̂j , ŝ

(j)
− =

(ŝ
(j)
+ )†.
Within the Bell scenario, we consider in each site j,

the measurement of two local collective spin observables

ŝ
(j)
α on the j-th site, with α = 0, 1, each giving d = 3
possible results

r
(j)
0 = 0,−1

2
,+

1

2
; r

(j)
1 = 0,−1

2
,+

1

2
, (3)

as illustrated in Fig.1, where the result r = 0 is assigned
to any measurement result different from ±1/2. The
probability distribution PM (r|α) to obtain the results r
given the settings α can be theoretically calculated, in
terms of the density operator ρ̂ describing the system’s
state, as

PM (r|α) = tr


ρ̂

M⊗

j=1

Π̂αj ,r(j)


 , (4)

where Π̂αj ,r(j)=±1/2 projects onto the eigensubspace of

ŝ
(j)
αj with eigenvalue r(j) = ±1/2, and Π̂αj ,r(j)=0 =

1̂ −∑r=±1/2 Π̂αj ,r projects onto the subspace perpen-

dicular to both eigensubspaces of ŝ
(j)
αj corresponding to

the eigenvalues r(j) = +1/2 and r(j) = −1/2.
In the next Section, we derive two Bell inequalities

using this framework. The first one, relying on M -site
correlations, is mainly useful for highly entangled states
with a small number of lattice sites (see, e.g., Fig. 1).
The second one, relying on two-site correlations, is more
applicable to spin-squeezed states with a large number
of lattice sites (see, e.g., Fig. 1-(c)). For both cases,
we introduce a simplified toy model accounting for oc-
cupation defects that result in measurements outcomes
r(j) ̸= ±1/2.

III. TOY MODEL

In the lattice system considered one starts from a prod-
uct state |x⟩⊗N where each atom is in a coherent super-
position of two internal states, i.e. coherent spin state
(CSS) along the x direction. The entanglement between
spins is dynamically obtained using many-body interac-
tions by different protocols (see e.g., Sec. V and Sec. VI)
that can be effectively described, in some limit, by the
OAT model

ĤOAT = ℏχŜ2
z , (5)

where χ quantifies the strength of interactions and Ŝσ

represents the collective spin operator of N two-level
atoms with σ = x, y, z. In (5) we have σ = z. The
OAT model generates spin-squeezed states as well as non-
Gaussian entangled states, including the GHZ state [45].

In order to study the role of occupation defects in the
detection of Bell correlations, we introduce an approxi-
mate toy model where the internal and external degrees
of freedom of the atoms are decoupled

ρ̂ = ρ̂ext ⊗ ρ̂SS. (6)

Here ρ̂SS describes the internal degrees of freedom of the
atoms including entanglement among the spins. In par-
ticular, we consider the OAT evolution (5)

ρ̂SS = |ψt⟩⟨ψt| with |ψt⟩ = e−iĤOATt/ℏ|x⟩⊗N , (7)

and ρ̂ext describes the external degrees of freedom, which
we assume to be factorized over the different lattice sites

ρ̂extern =
M⊗

j=1

ρ̂j with ρ̂j = p|1⟩jj⟨1|+ (1− p)ρ̂⊥j , (8)

where |1⟩j is the Fock state with one spin at site j and
p is the probability of having a single occupancy state.
The probability of having an empty, double, etc., occu-
pied site, as described by ρ̂⊥j , is given by (1 − p). In

practice, in ρ̂⊥j we only consider empty sites or doubly
occupied sites. In this framework, when measuring a lo-
cal spin observable, we assign the value r(j) = 0 to any
measurement result different from ±1/2.

A. M-site Bell correlations

We now derive a Bell inequality whose violation allows
the detection of non-local correlations. For this, from the
measurement outcomes, in the two settings α = 0, 1, in
each subsystem we introduce the complex quantity

r
(j)
+ = r

(j)
0 + i r

(j)
1 (9)

and we consider the product

cM =

M∏

j=1

r
(j)
+ , (10)
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In a local realistic theory, where the probability distribu-
tion PM (r|α) has the form of (1) and (2), the average of
cM over many Bell experiment realizations is given by

⟨cM ⟩ =
∫
dλ q(λ)

M∏

j=1

r
(j)
+ (λ). (11)

By introducing the functions f(λ) = 1 and

g(λ) =
∏M

j=1 r
(j)
+ (λ), and the scalar product ⟨f, g⟩ =∫

dλ q(λ)f∗(λ)g(λ), the application of the Cauchy-
Schwarz inequality to the functions f(λ) and g(λ), gives

|⟨f, g⟩|2 ≤ ⟨f, f⟩⟨g, g⟩. (12)

This leads to the following Bell inequality

EM ≡ |⟨cM ⟩|2 ≤
∫
dλ q(λ)

M∏

j=1

|r(j)+ (λ)|2 ≤ 2−M , (13)

and EM is the M -site Bell correlator. We choose, in each

site j, the settings α = 0 and α = 1 corresponding to ŝ
(j)
y

and ŝ
(j)
z respectively [28], to form

ŝ
(j)
+ = ŝ(j)y + i ŝ(j)z . (14)

It is worth stressing here, that the above setting is op-
timal for the GHZ state and is less effective for other
entangled states generated by the OAT dynamics. The
Bell inequality (13) takes the form

EM = |⟨ŝ(1)+ ŝ
(2)
+ ...ŝ

(M)
+ ⟩|2 ≤ 2−M . (15)

When considering the toy model (6), the only nonzero
contribution to EM (15) comes from the sites occupied
by a single spin. We have

E(p ̸=1)
M = p2ME(p=1)

M , (16)

where pM represents the probability that theM sites are
occupied with a single atom. In the non-Gaussian regime
of the OAT dynamics (7), a macroscopic superposition
of coherent states is created at some particular instants
χτ = π/q labelled by an even integer q = 2, 4, 6, . . . ,M ,
with q = 2 for the GHZ state [28, 45]. The M -site
Bell correlator corresponding to these non-Gaussian spin

states, for p = 1, reads E(p=1)
M ≂ 1/q2, see Eq.(17) in [28].

By replacing in (16), one can derive a critical value of p
below which the M -site Bell correlations present in the
states generated at χτ = π/q cannot be detected

pc =
q1/M√

2
, (17)

i.e. for which E(p=pc)
M = 2−M . We note that in the large

M limit we have pc ≈ 1/
√
2 for all q.

B. Two-sites Bell correlations

In the case of the two-sites Bell correlations, we intro-

duce the vector M⃗ and the matrix C̃, whose elements,
for α, β = 0, 1, are respectively given by

Mα =

M∑

j=1

⟨r(j)α ⟩ (18)

Cαβ =
∑

i,j ̸=i

⟨r(i)α r
(j)
β ⟩, C̃αβ = Cαβ −MαMβ . (19)

It can be shown [29] that for any input data M⃗ and C̃
compatible with a LV theory (1), any 2×2 positive semi-

definite matrix A and any 2 × 1 vector h⃗, the following
Bell inequality holds

L(A, h) = tr(AC̃) + h⃗ · M⃗ + Emax ≥ 0, (20)

where the classical limit is

Emax = max
r⃗

[
r⃗ TAr⃗ − h⃗ · r⃗

]
, (21)

with r⃗ = (r0, r1)
T being the vector of all possible pairs

of outcomes corresponding to the two settings α = 0 and
α = 1 for a single subsystem. The positive semi-definite

matrix A and the vector h⃗ that minimize L(A, h) can be
found using a data-driven method as in Ref. [29]. We
find that the Bell inequality 2

L = C̃00 + C̃11 − C̃01 − C̃10 −M0 −M1 +M ≥ 0, (22)

first established in Ref. [29] for spin-squeezed states in
the case of only two possible measurement outcomes, is
optimal also in our case with the three possible outcomes
(3) and under occupation defects.

For the case of two-sites Bell correlations, we choose
α = 0 and α = 1 corresponding to the measurement, at
each site j, of the spin components [29]

ŝ
(j)
0 = ŝ

(j)
n⃗ cos(θ) + ŝ

(j)
m⃗ sin(θ), (23)

ŝ
(j)
1 = ŝ

(j)
n⃗ cos(θ)− ŝ

(j)
m⃗ sin(θ), (24)

where the unit vector n⃗ is in the spin direction and m⃗,
perpendicular to the spin direction, is in the best squeez-
ing direction. The choice of the two settings (23)-(24)
is dictated by the geometry of the spin-squeezed states.
Non-zero expectation values come from the averages cal-
culated in the plane spanned by the n⃗ and m⃗ vectors.

2 Alternatively, the Bell inequality (22) can be represented using
the C matrix, namely L = C00+C11−C01−C10−(M0−M1)2−
M0 −M1 +M ≥ 0.
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The averages (18) and the correlations (19) for α, β ∈
{0, 1}, that form the Bell inequality (22), take respec-
tively the form

Mα =

M∑

j=1

∑

r=±1/2

r tr
[
ρ̂ Π̂αj ,r

]
(25)

C̃αβ =
M∑

i,j ̸=i


 ∑

r,s=±1/2

rs tr
[
ρ̂ Π̂αi,r ⊗ Π̂βj ,s

]

−MαMβ .

(26)

To account for the occupation defects, we evaluateMα

and C̃αβ to determine the form of the Bell inequality
using the toy model density matrix (6) under the two
scenarios investigated in the physical systems presented
in Secs. V and VI whenN ≤M andN =M , respectively.

1. Non-unit filling

The first scenario, relevant to the system described in
Sec. V, assumes that N = pM ≤ M . Under this con-
dition, p < 1 indicates a non-unit filling of the lattice
whose sites are empty or singly occupied. The density
matrix ρ̂⊥j in (8), in this scenario, becomes

ρ̂⊥j = |0⟩jj⟨0|. (27)

The averages (18) and the correlations (19) for α, β ∈
{0, 1} are in this case

Mα = ⟨Ŝn⃗⟩SS cos(θ), (28)

C̃αβ =
N − p

N − 1

{
(∆Ŝn⃗)

2
SS cos

2(θ)− (−1)δαβ (∆Ŝm⃗)2SS sin
2(θ)

−N
4
cos[2θ(1− δαβ)]

}
+

1− p

N − 1
⟨Ŝn⃗⟩2 cos2(θ). (29)

The Bell inequality (22) is given, for this scenario, by

L
(V)
θ

M
=
p(N − p)

N − 1
sin2(θ)

(
4(∆Ŝm⃗)2SS

N
− 1

)

− 2p
⟨Ŝn⃗⟩SS
N

cos(θ) + 1 ≥ 0. (30)

The minimization of L
(V)
θ with respect to θ gives

L(V)

M
= 1− p(N − 1)

N − p

⟨Ŝn⃗⟩2SS
N
[
N − 4(∆Ŝm⃗)2SS

]

− p(N − p)

N − 1

[
1− 4(∆Ŝm⃗)2SS

N

]
, (31)

for an optimal θ such that cos θopt =
N−1
N−p

⟨Ŝn⃗⟩SS
N−4(∆Ŝm⃗)2SS

3.

The equation (31) is represented in Fig. 2 as a function

3 This solution should verify | cos(θopt)| ≤ 1, which introduces

−0.2

−0.1

0.0

0.1

L
(V

)
/M

0.0 0.2 0.4 0.6 0.8 1.0

χτ
√
N

−0.2

−0.1

0.0

0.1

L
(V

I)
/M

0.84 0.92 1.00

p

FIG. 2. Variation of the non-locality witness Lopt/M , given
by (39) in the upper panel and (31) in the lower panel, dur-
ing the one-axis twisting dynamics with N = 103 for different
values of p (probability of single occupation of a given site).
The flat behaviour at short times happens because of the op-
timization condition.

of time of the OAT dynamics for a given N and for differ-
ent values of the occupation probability p. This reveals
that for a given N and at each moment of time τ , there
is a critical value of p below which, the two-site Bell cor-
relations present in the system cannot be detected. This
critical probability p = pc is the value for which, the
following 3rd order equation holds

p3 − 2N

(
1− 4(∆Ŝm⃗)2SS

N

)
p2 +

[
N2 +N − 1

]
p

+


4N(∆Ŝm⃗)2SS +

(N − 1)2⟨Ŝn⃗⟩2SS
N
[
N − 4(∆Ŝm⃗)2SS

]


 p

−N(N − 1) = 0. (33)

In the limit of large atom number N , the minimal value

the restriction p ≤ N − (N − 1)|⟨Ŝn⃗⟩
/
[N − 4(∆Ŝm⃗)2]|. Here,

L(V) can be written in terms of the squeezing parameter
ξ2 = N(∆Ŝm⃗)2SS

/
⟨Ŝn⃗⟩2SS and the normalized mean spin v =

⟨Ŝn⃗⟩SS
/
(N/2) as

L(V)

M
= 1− p(N − 1)

N − p

v2/4

1− ξ2v2
− p(N − p)

N − 1
(1− ξ2v2). (32)
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of (31), over χτ , converges to the p-dependent constant

L
(V)
min

M
≈ 1− 5

4
p, (34)

and the corresponding critical value of the occupation
probability tends to pc = 4/5.

2. Doubly occupied sites

In this scenario, relevant to the system described in
Sec. VI, we assume that N = M . Under this condition,
p < 1 indicates a redistribution of the N atoms among
the M lattice sites resulting in the emergence of both
empty and doubly occupied sites. The filling factor is
one, f = 1. Thus, the density matrix ρ̂⊥j in (8) can be
written as

ρ̂⊥j =
|0⟩jj⟨0|+ |2⟩jj⟨2|

2
. (35)

The calculation of the averages (18) and the correla-
tions (19) for α, β ∈ {0, 1} gives

Mα = p⟨Ŝn⃗⟩SS cos(θ), (36)

C̃αβ = p2(∆Ŝn⃗)
2
SS cos

2(θ)− (−1)δαβp2(∆Ŝm⃗)2SS sin
2(θ)

− p2
N

4
cos[2θ(1− δαβ)], (37)

where the subscript SS refers to an expectation calculated
in the ρ̂SS state (7), and the Bell inequality (22) reads

L
(VI)
θ

M
= p2 sin2(θ)

(
4(∆Ŝm⃗)2SS

N
− 1

)

− 2p
⟨Ŝn⃗⟩SS
N

cos(θ) + 1 ≥ 0. (38)

By minimizing L
(VI)
θ with respect to θ we obtain

L(VI)

M
= 1− ⟨Ŝn⃗⟩2SS

N
[
N − 4(∆Ŝm⃗)2SS

] − p2

[
1− 4(∆Ŝm⃗)2SS

N

]
,

(39)

for an optimal θ such that cos θopt = 1
p

⟨Ŝn⃗⟩SS
N−4(∆Ŝm⃗)2SS

4,5.

The equation (39) is represented in Fig. 2 as a function
of time τ of the OAT dynamics for a given N and for

4 This solution should verify | cos(θopt)| ≤ 1 which introduces the

restriction p ≥ |⟨Ŝn⃗⟩
/
[N − 4(∆Ŝm⃗)2]|.

5 An alternative formula of L(VI) can be obtained by introducing
the spin squeezing parameter ξ2 and the normalized mean spin
v as

L(VI)

M
= 1− v2/4

1− ξ2v2
− p2(1− ξ2v2). (40)

different values of p. We note that for a given N and
at each moment of time, there is a critical value of p
below which, the two-site Bell correlations present in the
system cannot be detected, from (39) we obtain

pc =

√
N
[
N − 4(∆Ŝm⃗)2SS

]
− ⟨Ŝn⃗⟩2SS

N − 4(∆Ŝm⃗)2SS
. (41)

In the limit of large atom number N , the minimal value
of (39), over χt, approaches a p-dependent constant value

L
(VI)
min

M
≈ 3

4
− p2, (42)

and the corresponding critical probability pc approaches
pc =

√
3/2. A lower value of p can be obtained with a

Bell inequality including onsite and two-site correlations
up to the fourth-order. In the limit of large N , this leads
to a critical occupation probability of pc = 1/2 [46].

IV. APPLICATION WITH ULTRA-COLD
ATOMS IN OPTICAL LATTICES

We test the predictions of our toy model using a sys-
tem consisting of N ultra-cold bosonic atoms confined in
an optical lattice. We focus on rubidium-87 atoms oc-
cupying two internal states, labelled a and b, and loaded
into an optical lattice potential, akin to recent experi-
ments employing quantum gas microscopes [47, 48]. The
optical lattice comprisesM lattice sites and is considered
to be in one dimension.
The system, in the lowest energy band, is conveniently

considered in the Wannier functions basis [49]. In the
tight-binding limit, where the lattice potential exceeds
the recoil energy ER = ℏ2k2/(2m), the system can be
conveniently described by the Bose-Hubbard model,

ĤBH = −t
∑

i,j=i±1

(
â†i âj + b̂†i b̂j

)
+
Uaa

2

M∑

i=1

n̂ai (n̂
a
i − 1)

+
Ubb

2

M∑

i=1

n̂bi (n̂
b
i − 1) + Uab

M∑

i=1

n̂ai n̂
b
i , (43)

where t and Uσσ′ are the tunneling and interaction pa-

rameters. âi (b̂i) is the annihilation operator of an atom
in internal state a (b) in the i-th site of the lattice, and

n̂ai = â†i âi, n̂
b
i = b̂†i b̂i are the corresponding number op-

erators.
We explore two protocols for the dynamical generation

of Bell correlations within this system as detailed in Sec-
tions V and VI, both resulting in Mott entangled states
where atoms exhibit spin entanglement and are evenly
distributed across the lattice. In both cases, the initial
state ρ̂a with all atoms in the internal state |a⟩ is turned
into a coherent superposition of |a⟩ and |b⟩ by applying
a π/2−pulse, which is equivalent to

ρ̂ini = e−iŜyπ/2ρ̂ae
iŜyπ/2. (44)
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The two protocols differ in their specific mechanisms for
inducing entanglement in the system and hence in the
relevant source of occupation defects.

In the first protocol, Bell correlations are generated di-
rectly in the strongly interacting Mott regime Uσσ′ ≫ t
where individual spins interact via spin-exchange inter-
actions between neighbouring spins (46). These interac-
tions allow for the generation of entanglement within the
system either through weak anisotropy or by coupling
with an inhomogeneous field. The mechanism for gener-
ating entanglement was explained and demonstrated in
prior works such as [41, 42, 50]. In the second protocol,
Bell correlations are induced by atom-atom interactions
in the superfluid regime t≫ Uσσ′ with all-to-all individ-
ual spin connections. Subsequently, these correlations are
transferred to the Mott phase by an adiabatic increase of
the optical lattice depth, a process described in detail in
previous studies [28, 31, 32].

The final state of both protocols allows measuring spin
components at a specific lattice site. In the Bell scenario,
the outcomes of local measurements across all lattice sites
can be collected, and used for the detection of Bell corre-
lations using inequalities (15) and (22). In the ideal real-
ization of the Mott phase protocol, when ρ̂a is the ground
state where each lattice site hosts precisely one atom,
two distinct measurement outcomes are possible. How-
ever, imperfections introduce non-unit filling throughout
the lattice, leading to additional measurement outcomes,
such as when a site is either empty or double occupied.
These failures arise from imperfect preparation of initial
state ρ̂a or to non-zero temperature.

In the following sections, we consider the role of imper-
fections and we establish a connection between the factor
p of the toy model (6) and the filling factor f = N/M or
the initial temperature T for these two protocols.

V. ENTANGLEMENT GENERATION IN THE
MOTT PHASE

In the strongly interacting limit Uσ,σ′ ≫ t and in the
ground state manifold with at most one atom per lattice
site, the system (43) is approximately described by the
t–J model

Ĥt−J = −t
∑

i,j=i±1

P̂0

(
â†i âj + b̂†i b̂j

)
P̂0 + ĤXXZ, (45)

where P̂0 is a projector operator over the manifold of at
most single occupancy states, and where

ĤXXZ = −J
M−1∑

j=1

(
ŝ(j)x ŝ(j+1)

x +ŝ(j)y ŝ(j+1)
y +∆ŝ(j)z ŝ(j+1)

z −1

4

)
,

(46)
is the Heisenberg XXZ model with the spin-exchange in-
teraction parameter J = 4t2/Uab and the anisotropy pa-
rameter ∆ = Uab/Uaa + Uab/Ubb − 1 [51]. When ∆ = 1

the Hamiltonian takes the form of the isotropic Heisen-
berg XXX model and it is a natural case for rubidium-
87 where Uaa ≈ Ubb ≈ Uab. The anisotropy parameter
∆ can be tuned by changing the values of interaction
strengths using either Feshbach resonances or by shifting
optical lattice potentials for states a and b. The collec-
tive spin operators are just a summation over the indi-

vidual ones, Ŝσ =
∑M

j=1 ŝ
(j)
σ for σ = x, y, z,±. The tun-

nelling term in (45) is relevant whenever the filling factor
f = N/M is not one, meaning there are holes (empty
sites) in the system and N ≤M .

Let us consider the case of zero temperature when the
initial state ρ̂a is in the Mott regime. In the ideal case, we

have ρ̂a =
⊗M

j=1 |a⟩⟨a|j , indicating that at each lattice

site there is an atom in the internal state |a⟩. However,
in the presence of holes, the on-site state can be |0⟩⟨0|j if
it is not occupied. In the given experimental realisation,
the number of holes can be arbitrary as well as their
positions. In our simulations, we evolve single realiza-
tions with initially each site being empty or singly occu-
pied, and then average over many realizations to evaluate
expectation values. Specifically, we generate a random
number xj ∈ (0, 1] for each lattice site, obtaining

|Ψx⟩j = θ̄(f − xj)|a⟩j +
(
1− θ̄(f − xj)

)
|0⟩j , (47)

where θ̄(x) is the Heaviside step function. The density
matrix ρ̂a describing Nr realizations is obtained through
a simple averaging,

ρ̂a =
1

Nr

Nr∑

r=1




M⊗

j=1

|Ψx⟩⟨Ψx|j


 , (48)

over the set of on-site random numbers r =
{x1j , x2j , · · · , xNr

j } for all j ∈ {1, ...M}. One can show,
that in the continuous limit, we obtain

ρ̂a =

M⊗

j=1

(f |a⟩⟨a|j + (1− f)|0⟩⟨0|j) , (49)

given that all the sites are equivalent. Therefore, the
filling factor f can be identified with the parameter p
of the external state of the toy model (6) provided that
ρ̂⊥j = |0⟩⟨0|j . Owing to the presence of holes, the average
number of atoms N differs from the number of lattice
sites M when f ̸= 1, namely N = fM .

It is worth noting here, that the density matrix ρa
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in (49) can also be cast in the following way

ρ̂a = fM
M⊗

j=1

|a⟩⟨a|j

+ fM
(
1− f

f

)1

|0⟩⟨0|1

M−1⊗

j=1

|a⟩⟨a|j + P1




+ fM
(
1− f

f

)2

|0⟩⟨0|1 ⊗ |0⟩⟨0|2

M−2⊗

j=1

|a⟩⟨a|j + P2




+ · · · ,
(50)

where Pσ are all other configurations with σ holes. The
state (50) can be written using the shorter notation

ρ̂a = fM




M⊗

j=1

|a⟩⟨a|j +
M∑

σ=1

(
1− f

f

)σ

Σσ [ρ̂σ]


 , (51)

where ρ̂σ is the product state of a given configuration
having σ holes and 1 − σ occupied sites while Σσ repre-
sents summation over permutations of all possible con-
figurations.

Having the above expression, the initial spin coherent
state (44) can be expressed as follows:

ρ̂ini = fM

[
ρ̂
(0)
ini +

M∑

σ=1

(
1− f

f

)σ

Σσ

[
ρ̂
(σ)
ini

]]
, (52)

where the rotations act on the density matrix correspond-
ing to specific configurations of σ holes

ρ̂
(σ)
ini = e−iŜyπ/2ρ̂σe

iŜyπ/2, (53)

and ρ̂
(0)
ini = e−iŜyπ/2

(⊗M
j=1 |a⟩⟨a|j

)
eiŜyπ/2. Therefore,

any expectation values of the operator Ô can be evalu-
ated as

⟨Ô⟩ = fM

[
Tr[ρ̂

(0)
ini Ô] +

M∑

σ=1

(
1− f

f

)σ

⟨Ô⟩σ
]
, (54)

where ⟨Ô⟩σ = ΣσTr[ρ̂
(σ)
ini Ô], and where summation runs

over all configurations of σ holes on M lattice sites.
In Subsections VB and VC, we employ the above-

discussed approach for the numerical evaluation of Bell
correlations and the critical value of the filling factor al-
lowing for their detection. Before, however, let us discuss
the mechanism responsible for generating entanglement
within the system in the Mott phase.

A. Effective microscopic description

To generate entanglement from the initial spin coher-
ent states (52) driven by the t–J Hamiltonian (45) we

consider two methods. Both of them were thoroughly
investigated in [41].
The first (A) uses a weak anisotropy ∆ ̸= 1 in (46),

such that ∆ ≪ 3− 2 cos(π/M) and ∆ ≫ 2 cos(π/M)− 1,
to generate entanglement in the system. Under an ideal
scenario with N = M ,the system can be represented by
a single spin chain whose dynamics is described by the
OAT model [41]. The presence of holes divides the spin
chain into partial chains separated by holes whose con-
figurations are included in (52). For instance, if a single
hole is located somewhere in the middle of the chain (not
at the borders), the system can be effectively viewed as
two partial chains. The system dynamics composed of
the partial chains separate only when the positions of
holes are fixed. The microscopic model describing the
dynamics of each specific configuration involved in (50)
is effectively approximated by the OAT model when the
positions of holes are pinned to the lattice. The model
describing each of n partial chains for a given configura-
tion of σ holes reads

Ĥ
(0)
eff,n = −χ(0)

n Ŝ2
z,n, with χ(0)

n =
J(∆− 1)

(Ln − 1)
, (55)

where Ln is the number of atoms consisting of the partial
chain.
The second method (B) uses a weak inhomogeneous

magnetic field

ĤB =
∑

j

βj ŝ
(j)
z , (56)

with βj ≪ J
[
cos
(
π
N

)
− 1
]
, for the isotropic case ∆ = 1

to generate entanglement in the system. In this case,
when σ holes are pinned into the lattice, the effective
model describing each of the n partial chains is described
effectively by the following Hamiltonian

Ĥeff,n = χnŜ
2
z,n + vnŜz,n, (57)

where we omitted constant energy terms, and where

χn =
1

Ln − 1

Ln−1∑

q=1

|c(q)n |2

E
(q)
n

, (58)

vn =
1

Ln

ln+Ln−1∑

l=ln

βl, (59)

c(q)n =

√
2

Ln

ln+Ln−1∑

l=ln

p
(q,n)
l (βl − vn), (60)

with ln being the location of the first spin in the partial

chain and E
(q)
n = J(1− cos(πq/Ln)).

The effective models for the (A) and (B) methods are
derived and explained in detail in [41]. Their validity
for describing spin-squeezing generation was also demon-
strated.
Therefore, one can employ the effective models based

on the OAT dynamics for partial chains when evaluat-
ing expectation values as given by (54) when considering
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fixed positions of holes (effectively t = 0 in the t–J model
(45)). We employ them to calculate the upper bound on
the filling factor required for the Bell correlations de-
tection as demonstrated in VC. However, the effective
models become inaccurate when the tunnelling of holes
occurs. In such a case, we perform full numerical many-
body calculations by the exact diagonalization method of
the t–J model (45) when demonstrating Bell correlations
and validity of the Toy model.

In the next subsections, we demonstrate the genera-
tion of Bell correlations in the system using scenarios A
and B. In our numerical simulations, we consider open
boundary conditions [41] and use the parameters as in
the recent experiment of A. Rubio-Abadal et al [47] with
87Rb atoms, lattice spacing d = 532 nm, and inter- and
intraspecies interactions Uaa ∼ Ubb ∼ Uab = U [52] with
U = 24.4t.

B. M-site Bell correlations

We numerically evaluate the many-body Bell correla-
tor EM = |⟨ŝ1,+ . . . ŝM,+⟩|2 as defined in (15) for the ini-
tial spin coherent state given by (52).

In the upper panel of Fig. 3 we show the evolution of
the M -site Bell correlator EM with M = 12 and for the
two proposed methods, A and B. The small shift in time
scale and lower magnitude of the correlator maxima in
the anisotropic case result from its effective model being
approximated to the first order [41]. The only relevant
contribution comes from the part of the system state de-
scribing all sites occupied, as already discussed in Section
III. The tunnelling of holes cannot change the value of
this correlator.

In the lower panel of Fig. 3 we check the scaling of the
correlator with the filling factor f for relevant instances
in time using a logarithmic scale. We see good agreement
with the scaling of the toy model result in Eq. (16) when
identifying p with f . Likewise, we see the GHZ state
result crossing the classical limit at the value obtained
in Eq. (17) for q = 2, identified by the edge of the grey
area.

C. Two-sites Bell correlations

In the short-time dynamics, where spin squeezing is
generated, the two-site Bell correlator L given by (22) is
more relevant.

In Fig. 4 we demonstrate the variation of the two-sites
Bell correlations generated using the method A (inter-
actions anisotropy, left column) and B (inhomogeneous
magnetic field, right column) for different filling factors
and effective tunnelling rates t/J . The color bar indi-
cates the magnitude of effective tunnelling when holes
are present in the system relative to the relevant energy
scale J . While in all instances t ̸= 0 to have a non-zero
value of J , we assume for the effective tunnelling t/J = 0

0 π
4

π
2

3π
4

πtbest

χτ

10−4

10−3

10−2

10−1

100

4
E M

f = 1

AnisotropyMagnetic
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limit

1.000.60 0.70 0.80 0.90

f

10−9

10−7

10−5

10−3

10−1

4
E M

χτ = π/2
χτ = π/4

χτ = tbest

Classical
limit

f < 21/M/
√

2

FIG. 3. M -sites Bell correlator EM =
∣∣ ⟨⊗M

j s+j ⟩
∣∣2

for the Hamiltonian (45) with M = 12 sites under sce-
nario A (Anisotropy) with ∆ = 0.98, βj = 0 (blue line)
and scenario B (Magnetic Field) with ∆ = 1, βj =
J/50 cos [π(M − 1)/M(j − 1/2)] (orange lines). Upper panel
shows the evolution of the correlator for f = 1. Lower panel
shows the scaling at a particular moment in time with the
filling factor f for scenario B. The solid line corresponds to
the GHZ state, the dashed line to a superposition of q = 4
coherent states, and the dotted line to the best spin-squeezing
time tbest. The logarithmic scale has been used to illustrate
the power-law influence of f and the classical limit 2−M .

that positions of spins are fixed for those particular nu-
merical simulations. Shaded areas indicate the upper and
lower boundaries set by the results of holes fixed in place
and holes moving infinitely fast, respectively. The upper
bound is calculated numerically for the case of the fixed
position of holes by using effective models as described
in [41]. The lower bound is given by the toy model and
the corresponding Bell inequality (31) where expectation
values ⟨·⟩SS are replaced with the one given by the cor-
responding OAT model. We also observe the generation
of Bell correlations requires a larger filling factor in the
inhomogeneous magnetic field scenario; both when the
movement of holes is allowed and when not. Neverthe-
less, the numerical results demonstrate the effectiveness
of the proposed toy model (31) in the estimation of the
lower bound in the detection of two-sites Bell correla-
tions.

Note, the microscopic effective models (55) and (57)
differ by the presence of a linear term, such that their
results will be bounded by different limits as illustrated
in Fig. 5. The critical value for the lower bound in
this figure is obtained by solving the corresponding cu-
bic equation by setting (31) to zero, for which only one
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FIG. 4. Evolution of the two-sites Bell correlator (22) op-
timized over θ for the Hamiltonian (45) with M = 12 sites
under the scenario A (Anisotropy) with ∆ = 0.98, βj = 0
(left column) and scenario B (Mag. Field) with ∆ = 1, βj =
J/50 cos [π(M − 1)/M(j − 1/2)] (right column). Each panel
corresponds to a given filling factor f , as indicated in their
lower left corners. Lines of different colours show different
values of t/J (see colour bars). Grey areas indicate the re-
gions between the lower and upper bounds as explained in
the text, where χ is calculated with (55) or (58) assuming a
single chain of size M .

real root exists. The anisotropy scenario A, while less
accurately described by the corresponding effective OAT
model (55) as explained in [41], achieves lower bound re-
sults predicted by the toy model (31) when tunnelling
processes happen. This is much harder to achieve in the
inhomogeneous magnetic field scenario B since the lin-
ear term in (57) changes at each configuration of holes
and makes the dynamics largely incoherent. This is a
stark contrast with the M-site Bell correlator presented
in Fig. 3 where we find the lower bound set by the toy

12 14 16 18 20

M
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f c
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Mag. Field
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Anisotropy
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Anisotropy

Mag. Field

0.00 6.04 12.38 24.75

t/J

0.0 6.1 12.5 25.0

t/J

FIG. 5. Critical value of filling factor fc with respect
to system size M for the Hamiltonian (45) under scenario
A (Anisotropy) with ∆ = 0.98, βj = 0 (triangular mark-
ers) and scenario B (Mag. Field) with ∆ = 1, βj =
J/50 cos [π(M − 1)/M(j − 1/2)] (cross markers). The lower
and upper bounds are shown in solid lines, with the area be-
tween them filled in grey. We use a first passage algorithm
with similar data to the one used in Fig. 4 to obtain these
values. Due to numerical calculation costs, results for M = 12
include configurations of all possible numbers of holes in the
initial state, while results for M = 14, 16 include configura-
tions with, at least, up to three holes.

model (16) to be equally accurate.

VI. ENTANGLEMENT GENERATION IN THE
SUPERFLUID PHASE

We consider here the protocol where the quantum
correlations are generated using atom-atom interactions
within the superfluid phase and then stored in the Mott
phase through adiabatic increasing of the lattice height
[43, 53]. The tunnelling parameter t and interaction pa-
rameters Uσσ′ are then approximated as [53]

t ≈ 4√
π

(
V0
Er

)3/4

e−2
√

V0/Er , (61)

Uσσ′ ≈
√

32

π

aσσ′d

L2
⊥

(
V0
Er

)1/4

, (62)

where aσσ′ are the s-wave scattering lengths, V0 is the
lattice potential depth and L⊥ is characteristic length of
the wave-function perpendicular to the lattice direction.
In this protocol, initially, all atoms occupy the internal
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state a, and at zero temperature, they are in the ground

state of the Bose-Hubbard Hamiltonian |ψ(a)
0 ⟩ in the su-

perfluid regime. Subsequently, a π/2 pulse is applied to
put the atoms in a coherent spin state where the collec-
tive spin is along the x-axis. During the dynamics, the
lattice height V0 linearly increases as

V0(τ) = Vini + (Vfin − Vini)
τ

τramp
, (63)

such that, at τ = τramp, for an adiabatic evolution and
initially zero temperature, the system reaches the Mott-
squeezed state where the atoms are spatially distributed
with one atom per lattice site and show entanglement
in their internal degree of freedom (from spin squeezed
state up to a GHZ state according to the chosen ramp
duration τramp). This corresponds to a state of the form

(6) with ρ̂ext =
⊗M

i=1 |1⟩jj⟨1|. At finite temperature T ,
the system exhibits initial thermal fluctuations described
by the density operator

ρ̂T =
1

Z

∑

n

e−E(0)
n /kBT |ψ(a)

n ⟩⟨ψ(a)
n |, (64)

where kB is the Boltzmann constant, E
(0)
n are the

eigenenergies of the initial Hamiltonian (in the superfluid

phase), all atoms are in the internal mode a so |ψ(a)
n ⟩ are

the corresponding eigenstates, and Z =
∑

n e
−E(0)

n /kBT is
the normalization constant. These initial thermal fluctu-
ations lead, at the end of the ramp, to a non-zero proba-
bility of having holes and double occupations of the lat-
tice sites. In this section, we explore the effect of these
initial thermal fluctuations on the detection of the M -
site and two-sites non-local Bell correlations present in
the final state. We first note that numerical observa-
tions performed in small 1D lattices reveal that when
Uaa = Ubb ≳ Uab > 0, which is relevant to our purposes,
the external dynamics is weakly affected by the internal
dynamics up to the Mott transition. Consequently, we es-
timate the occupation statistics of different lattice sites
in the final state by restricting the Bose-Hubbard model
to a single internal state a. In this case, the spectrum of
the Hamiltonian in the deep Mott phase with t → 0, is
simple: a non-degenerate ground state |ψMI

0 ⟩, with one
atom per lattice site, and gapped excited states |ψMI

n ⟩
showing holes and doubly occupied sites. The ground
state |ψMI

0 ⟩ is obtained, from the initial ground super-

fluid state |ψ(a)
0 ⟩, by a unitary evolution with the time

dependent Bose-Hubbard Hamiltonian

|ψMI
0 ⟩ = Û |ψ(a)

0 ⟩. (65)

A. M-site Bell correlations

Since the excited states |ψMI
n ⟩ have at least one hole

and one doubly occupied lattice site, they give no contri-
bution to the M -site Bell correlator (16) whose value at

non-zero temperature is given by

E(T ̸=0)
M = P 2

0 E(T=0)
M , (66)

where P0 = e−E
(0)
0 /kBT /Z represents the probability of

occupying the ground state in (64)6. The upper panel
of Fig. 6 illustrates this relationship for N = M = 4
over varying temperatures, revealing the existence of a
critical temperature Tc below which M -site Bell correla-
tions are detectable. In the weakly interacting regime,
the probability P0 can be analytically determined using
the Bogoliuobov theory, where, in the initial superfluid
regime, when all the atoms occupy the internal state a,
the system can be approximately described by the Hamil-
tonian

ĤBog = E0 +
∑

j ̸=0

ℏωj d̂
†
j d̂j . (67)

In equation (67), E0 is the ground state energy of the

system, d̂j is the annihilation operator of a Bogoliubov
quasi-particle associated with the quasi-momentum qj ,
and ℏωj is given in terms of the tunneling parameter t
and the interaction parameter U = Uaa, by

ℏωj = 4t

√
sin2(

π

N
j)

(
sin2(

π

N
j) +

U

2t

N

M

)
. (68)

At non-zero temperature T , the probability P0 of being
in the ground state is given by

P0 =
∏

j ̸=0

pj(nj = 0), (69)

where, pj(nj = n) = e−nℏωj/kBT /Zj with Zj = (1 −
e−ℏωj/kBT )−1. By replacing in (69), one obtains

P0 =
∏

j ̸=0

(
1− e−ℏωj/kBT

)
. (70)

The critical temperature Tc, below which Bell correla-
tions in states generated at times χτ = π/q of OAT
dynamics are detectable, can be determined by setting
P0 (70) equal to the critical probability pMc , where pc is
given by (17). The lower panel of Fig. 6 illustrates this
critical temperature for a GHZ state (i.e. q = 2) as a
function of the atom number N . We also find the critical
temperature for N → ∞ by taking the continuous limit
in (70), which yields

lnP0 ≃
∫ ∞

−∞
dj ln

(
1− e−ℏωj/kBT

)

≃ −πkBTN
6
√
2tU

.

(71)

6 It is important to note that in general, the final external config-
uration of the system does not consist of a factorized state over
lattice sites, as in (8), in particular the probability P0 is not of
the form P0 = pM .
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FIG. 6. Upper panel: M -sites Bell correlator E(T )
M at zero and

nonzero temperature as a function of the ramp duration τramp

for N = M = 4 with initial lattice height Vini/Er = 3 and
final lattice height Vfin/Er = 20. Parameters used here are:
aa = ab = 100.4aB and aab = 0.95aa, with aB being the Bohr
radius, d = 431 nm, L⊥ = d/

√
2π. Colored points represent

the exact numerical results, including the π/2 pulse and the
dynamical raising of the lattice, and continuous lines represent
Equation (66) where P0 was calculated using exact numerical
simulations. The horizontal grey dashed line represents the
non-locality bound. Lower panel: Critical temperature Tc,
below which the non-local Bell correlations associated to the
GHZ state can be detected, as a function of atom number N .
The dashed line corresponds to the limit found in (72).

We again take P0 = pMc for q = 2 to obtain the critical
temperature

kBTc =
3 ln 2

π

√
2tU, (72)

which is illustrated as a dashed line in the lower panel of
Fig. 6.

B. Two-sites Bell correlations

In large systems, studying M -site Bell correlations
can be challenging both theoretically and experimentally.
Therefore, for such systems, we focus on two-site Bell cor-
relations. In this context, we assume that the system is
brought to the Mott phase through a transformation that
leaves the system in thermal equilibrium at each moment
and conserves the entropy. Under such conditions, one
can explicitly write an approximate external density ma-
trix ρ̂ext of the system in the final Mott phase and thus
analytically determine the probability p(Ti) of having ex-

actly one atom in a given lattice site as a function of the
initial temperature Ti. We first calculate the initial en-
tropy SSF as a function of Ti. We then determine the
final temperature Tf of the system in Mott using entropy
conservation [54–56]

SSF(Ti)|V0=Vini
= SMott(Tf)|V0=Vfin

. (73)

In the weakly interacting regime, in the superfluid phase,
the entropy can be calculated using the Bogoliubov the-
ory. Indeed, By using the Bogoliubov spectrum (68), the
system partition function at temperature T can be writ-
ten as (non interacting bosons)

ZBog(T ) =
∏

j

(
1− e

− ℏωj
kBT

)−1

. (74)

The free energy defined as FBog = −kBT lnZBog is given
by

FBog(T ) = kBT
∑

j

ln

(
1− e

− ℏωj
kBT

)
. (75)

We thus deduce the entropy of the system as

S
(Bog)
SF (T )

kB
≡ −∂TF/kB

= −
∑

j


ln
(
1− e

− ℏωj
kBT

)
+

ℏωj

kBT

e
− ℏωj

kBT

1− e
− ℏωj

kBT


 . (76)

We now calculate the entropy of the system in the
Mott phase by considering the limit t = 0 and small
temperatures. In this case, the partition function, when
N = M , can be estimated using a two particles-holes
excitation approximation, where, we take into account
only the states with at most two holes and two doubly
occupied lattice sites, with U = Uaa

ZMott(T ) = 1 +M(M − 1)e
− U

kBT

+M(M − 1)(M − 2)(M − 3)e
− 2U

kBT . (77)

By using the free energy, in the Mott phase, one can
obtain the system entropy

SMott(T )

kB
= lnZMott +

1

ZMott

U

kBT

[
M(M − 1)e

− U
kBT

+M(M − 1)(M − 2)(M − 3)e
− 2U

kBT

]
. (78)

After determining Tf using (73), we approximate the ex-
ternal density matrix of the system at the end of the
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ramp as

ρ̂ext ≈
1

ZMott(Tf)

[
|ψ0h

0 ⟩⟨ψ0h
0 |

+e
− U

kBTf

M∑

j=1

M∑

k ̸=j

|ψ1h
jk ⟩⟨ψ1h

jk |

+e
− 2U

kBTf

M∑

j=1

M∑

k ̸=j

M∑

l ̸=j,k

M∑

m̸=j,k,l

|ψ2h
jklm⟩⟨ψ2h

jklm|


 ,

(79)

where |ψ0h
0 ⟩ is the state with exactly one atom per lattice

site (zero holes), |ψ1h
jk ⟩ is the state with only one hole in

the jth site and a single double occupancy in the kth site
and |ψ2h

jklm⟩ is the state with two holes in the jth and kth

sites respectively and two double occupancies in the lth

and mth sites respectively. This approximation enables
us to analytically calculate, as a function of the initial
temperature, the probability p of having a Fock state
with one atom in a given lattice site

p ≡ tr [|1⟩ii⟨1| ρ̂ext]

=
1

ZMott(Tf)

[
1 + (M − 1)(M − 2)e

− U
kBTf

+(M − 1)(M − 2)(M − 3)(M − 4)e
− 2U

kBTf

]
(80)

In numerical simulations of the exact dynamics, p can
be calculated as the trace of the projection of the density
matrix of the system on the eigenspace of the observable
n̂i associated with the eigenvalue ni = 1. Equation (80)
is represented in the upper panel of Fig. 7 as a function of
the initial temperature, compared to exact results using
both one- and two-component Bose-Hubbard Hamilto-
nian. This reveals that at sufficiently low temperatures
in small systems, the probability p(Ti) can be accurately
approximated using (80) and the entropy conservation
condition (73). By equating p(Ti) with the critical prob-
ability (41) from the toy model, one can determine an
upper bound, dependent on the ramp duration τramp,
for the initial temperature Tc above which two-sites non-
local Bell correlations cannot be detected. Lower panel
of Fig. 7 shows the critical temperature associated to the
minimal (critical) p, over the ramp duration τramp, as a
function of the atom number N 7.

VII. SUMMARY AND CONCLUSIONS

In this paper, we considered the detection of Bell cor-
relations using two-level ultra-cold bosonic atoms loaded

7 For larger atoms number, beyond the range of N presented in
the figure, the two-hole approximation becomes invalid.
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FIG. 7. Upper panel: Probability p of having a Fock state
with one atom in a given site at the end of the ramp for
N = M = 4 as a function of the initial temperature Ti given
by (80), in solid blue, where the final temperature Tf was
calculated using (73) where the superfluid entropy SSF(Ti)
was calculated using exact numerical simulations. This is
compared to the exact numerical results, with Vini/Er = 3
and Vfin/Er = 30, calculated using, in purple points, the
one-component Bose-Hubbard Hamiltonian and, in solid pur-
ple, the two-components Bose-Hubbard Hamiltonian. Lower
panel: Critical temperature Tc, associated to the minimal
value of pc, above which two-sites non-local Bell correlations
cannot be detected, as a function of the number of atoms N .

into optical lattices. We focus on identifying Bell vio-
lations for dynamically generated entangled states when
imperfections related to non-unit filling appear.
Our proposed toy model accounts for imperfections

that provide non-unit filling per site in the preparation
and measurement stages through the probability p of a
site being single-occupied. The M -site Bell correlator
shows a violation for this model in the limit of a large
system, when p > pc ≈ 1/

√
2. On the other hand, the

two-site Bell correlator relying on collective spin mea-
surements shows the bounds pc = 4/5 and pc =

√
3/2

when N = pM < M and N =M , respectively. We illus-
trate these general results under two practical methods
of entanglement generation varied by the source of im-
perfections: vacant sites due to initial non unit filling,
and vacant and multiply occupied sites due to non-zero
temperature of the initial state. In the presence of holes,
we study the generation of entanglement in the Mott in-
sulating via interaction anisotropy and inhomogeneous
field demonstrating the validity of the toy model predic-
tions for the critical value of the filling factor allowing
generation of Bell correlations. For non-zero tempera-
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tures, we study the generation of entanglement in the
superfluid regime produced via atom-atom interactions
transferred to the Mott regime via adiabatic rising of the
lattice height. We find a connection between the prob-
ability p of the toy model and the effective temperature
T of the initial state that drives the system from the
unit filling regime under study. We identified the critical
value of the initial temperature allowing violation of Bell
inequalities.

Our results reveal the fundamental limits on detecting
Bell correlations in the lattice system due to occupation
defects. The bounds identified in specific protocols fall
within the range of typical experimental realizations, sug-

gesting the feasibility of detecting Bell correlations.
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[4] J. Bowles, I. Šupić, D. Cavalcanti, and A. Aćın, Phys.

Rev. Lett. 121, 180503 (2018).
[5] D. Mayers and A. Yao, “Self testing quantum apparatus,”

(2004), arXiv:quant-ph/0307205 [quant-ph].
[6] R. Colbeck and R. Renner, Nature Physics 8, 450 (2012).
[7] F. G. S. L. Brandão, R. Ramanathan, A. Grudka,

K. Horodecki, M. Horodecki, P. Horodecki, T. Szarek,
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Chapter 9

Conclusions

Spin squeezing provides highly entangled states that retain Gaussian prob-
ability distributions. These states are useful for metrological and technical
applications like atomic clocks, quantum sensing or quantum computing. This
work has provided new methods to obtain spin-squeezed states in relatively
simple setups in one-dimensional optical lattices. With the Schieffer-Wolff
transformation as our main analytical tool in specific perturbative regimes, we
obtained precise and well defined effective models. While an intuitive picture
on the build up of correlations can be seen in the coupling to a correlated
external field or among pairs of particles, perturbation theory provides a dif-
ferent view: brief transitions to eigenstates with different types of correlations
ultimately provides more entanglement than a strong coupling, which could
even lower the total spin of the state. The proposed Hamiltonians are achiev-
able in state-of-the-art experiments of ultra-cold atoms in the optical lattice,
but they can potentially be implemented in other setups.

The chapters of this work explained different implementation proposals to
obtain relevant effective models and predictions, with a natural progression in
complexity and refinement of the techniques developed through the work. In
chapters 1 to 4 we introduced the topics of spin squeezing and the tools we
employ to study its dynamical generation in the optical lattice. In chapter 5
we augmented the known simulation of the OAT model by the two-component
Bose-Hubbard model in the superfluid phase with a term that arises from dipo-
lar interactions to obtain an anisotropic TACT model. We also proved how
its spin squeezing generation strongly resembles TACT until the anisotropy
parameter η ≪ 1. In chapter 6 we obtained qualitatively different effective
models depending on the boundary conditions for the Fermi-Hubbard model
in the Mott insulating phase with the introduction of spin-orbit coupling. In
both cases we are able to engineer one- and two-axis twisting models by either
adding a second spin-orbit coupling term or accurately tuning the coupling
phase. In chapter 7 we again used the single-magnon excitations results from
the previous works to derive a one-axis twisting model by including a weak
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inhomogeneous magnetic field in the two-component Bose-Hubbard model.
We also found the perturbation regime for the contact interactions anisotropy
parameter, where one-axis twisting is also generated through two-magnon ex-
citations. While these systems share the same effective model at half-filling,
they showed striking differences in the presence of holes. The existence of
an incoherent linear term in the effective model of the subsystems can de-
stroy entanglement generation. In chapter 8 we further explored the effect
of occupation defects in the Bose-Hubbard model by analyzing Bell correla-
tors tailored for defects at two stages: preparation and measurement. For the
preparation stage scenario we again studied the systems from chapter 7 when
the initial state is defined through an ensemble of different number of parti-
cles. The presence of a linear term in the partial chains of the system proved
highly detrimental for generating non-local correlations. For the measurement
stage scenario we studied the effect of temperature on the measurements of
the one-axis twisting model generated through contact interactions anisotropy
in the superfluid regime. As the lattice is raised until the Mott insulating
phase for measurement of the state, temperature affects the average single
occupancy of the superfluid phase. We obtained a critical value of the tem-
perature above which non-local correlations are undetected. Critical values
of the single particle per site probability for both scenarios were found bel-
low unit-filling, implying experiments testing Bell correlations with imperfect
stage preparation or measurements are feasible.

In each of the proposed cases, limitations and advantages are well un-
derstood and described. This catalogue of spin-squeezing generating Hamil-
tonians provides a nuanced perspective on entanglement generation in optical
lattices.Future research directions point towards extension to large spin, higher
dimensions, or the understanding of more complex effective models.
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