Accessibility Tools

Research highlights

ZrN as an innovative electrical contact for GaN nanowires

A thin metallic layer of zirconium nitride (ZrN) deposited on a substrate turns out to not only facilitate the formation of gallium nitride (GaN) nanowires, but also provides a low-resistance ohmic electrical contact to their bottom parts. This ph...

Enhancement of GaN nanowire luminescence by ultrathin oxide shells

Our scientists have discovered that a coverage of GaN nanowires with an ultrathin oxide shells significantly increases intensity of GaN luminescence and prevents photodegradation of the nanowires exposed to an environment. That finding is importan...

Self-assembled Nano stripes of a one-dimensional van der Waals semiconductor

Our scientists have discovered that antimony triselenide spontaneously forms longitudinal high-quality crystal structures, nano-stripes, in the process of molecular beam growth. This quasi-one-dimensional van der Waals semiconductor may therefore ...

Strain-Tunable luminescence appears in AgScP2S6 thanks to lattice defects

Nature's imperfections can sometimes unlock interesting and sought for properties. A team from IP PAS and MIT has found that structural point defects can serve as the origin of unusual photoluminescence in the visible range.

Topotaxial mutual-exchange growth of magnetic Zintl Eu3In2As4 axion insulator nanowires

The term "topotaxy" describes crystal growth process based on recrystallization in which the crystallographic orientation of the parent crystal determines that of the product composed crystal. Recently, a new method was developed and reported in t...

Fermi-Dirac Distribution Reformulated in Non-Hermitian Systems

Researchers have extended the traditional Fermi-Dirac distribution to non-Hermitian systems. This new formalism provides a general framework to compute quantum many-body observables in equilibrium systems coupled to dissipative environments.

Hydrodynamic properties of intrinsically disordered proteins

Intrinsically disordered proteins (IDPs), essential for regulating critical cellular functions, have long posed research challenges due to their lack of fixed three-dimensional structure. They are now more accessible for study thanks to a new mode...

Quantum thermodynamics with a single superconducting vortex

We control and monitor the state of the single superconducting vortex. Using our fastest thermometer in the nanoworld, we measured the thermal transient due to the vortex expulsion from the superconductor. An energy dissipated due to this expulsio...
Save
Cookies user preferences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Essential
Essential cookies
These cookies are necessary for the correct operation of the website and therefore cannot be disabled on this level; the use of these cookies does not involve the processing of personal data. While you can disable them via your browser settings, doing so may prevent the website from working normally.
Accept
Analytical cookies
These cookies are particularly intended to enable the website administrator to monitor the website traffic statistics, as well as the sources of traffic. Such data is typically collected anonymously.
Google Analytics
Accept
Decline